FSA Geometry End-of-Course Review Packet Circles Geometric Measurement and **Geometric Properties**

Table of	Contents
----------	----------

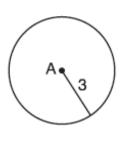
MAFS.912.G-C.1.1 EOC Practice	3
MAFS.912.G-C.1.2 EOC Practice	5
MAFS.912.G-C.1.3 EOC Practice	8
MAFS.912.G-C.2.5 EOC Practice	10
MAFS.912.G-GMD.1.1 EOC Practice	11
MAFS.912.G-GMD.1.3 EOC Practice	16
MAFS.912.G-GMD.2.4 EOC Practice	17
MAFS.912.G-GPE.1.1 EOC Practice	22
MAFS.912.G-GPE.2.4 EOC Practice	24
MAFS.912.G-GPE.2.5 EOC Practice	
MAFS.912.G-GPE.2.6 EOC Practice	27
MAFS.912.G-GPE.2.7 EOC Practice	

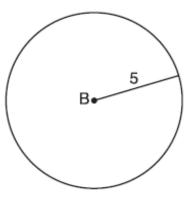
MAFS.912.G-C.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies that all	uses a sequence of no more than	uses the measures of different parts	explains why
circles are similar	two transformations to prove that	of a circle to determine similarity	all circles are
	two circles are similar		similar

1. As shown in the diagram below, circle A as a radius of 3 and circle B has a radius of 5.

Use transformations to explain why circles A and B are similar.





2. Which can be accomplished using a sequence of similarity transformations?

I. mapping circle O onto circle P so that O1 matches P1

II. mapping circle P onto circle O so that P_1 matches O_1

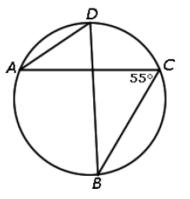
- A. I only
- B. II only
- C. both I and II
- D. neither I nor II

- 3. Which statement explains why all circles are similar?
 - A. There are 360° in every circle.
 - B. The ratio of the circumference of a circle to its diameter is same for every circle.
 - C. The diameter of every circle is proportional to the radius.
 - D. The inscribed angle in every circle is proportional to the central angle.
- 4. Which method is valid for proving that two circles are similar?
 - A. Calculate the ratio of degrees to the area for each circle and show that they are equal.
 - B. Calculate the ratio of degrees to the radius for each circle and show that they are equal.
 - C. Calculate the ratio of the area to the diameter for each circle and show that they are equal.
 - D. Calculate the ratio of radius to circumference for each circle and show that they are equal.
- 5. Which statement is true for any two circles?
 - A. The ratio of the areas of the circles is the same as the ratio of their radii.
 - B. The ratio of the circumferences of the circles is the same as the ratio of their radii.
 - C. The ratio of the areas of the circles is the same as the ratio of their diameters.
 - D. The ratio of the areas of the circles is the same as the ratio of their circumferences.

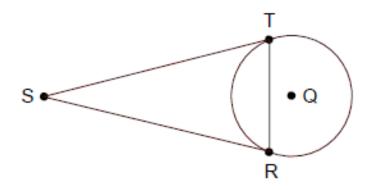
MAFS.912.G-C.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
solves problems	solves problems that use no	solves problems that	solves problems using at least
using the properties	more than two properties	use no more than two	three properties of central
of central angles,	including using the properties of	properties, including	angles, diameters, radii,
diameters, and radii	inscribed angles, circumscribed	using the properties of	inscribed angles, circumscribed
	angles, and chords	tangents	angles, chords, and tangents

- 1. If $m \angle C = 55^\circ$, then what is $m \angle D$?
 - A. 27.5°
 - B. 35°
 - C. 55°
 - D. 110°



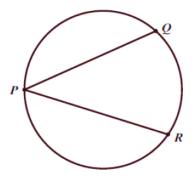
- 2. Triangle STR is drawn such that segment ST is tangent to circle Q at point T, and segment SR is tangent to circle Q at point R. If given any triangle STR with these conditions, which statement must be true?
 - A. Side TR could pass through point Q.
 - B. Angle S is always smaller than angles T and R.
 - C. Triangle STR is always an isosceles triangle.
 - D. Triangle STR can never be a right triangle.



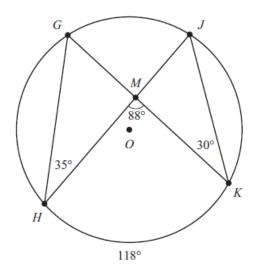
3. In this circle, $mQR = 72^\circ$.

What is m∠QPR?

- A. 18°
- B. 24°
- C. 36°
- D. 72°

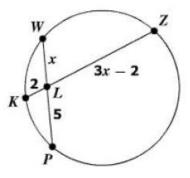


4. Use the diagram to the right to answer the question.



What is wrong with the information given in the diagram?

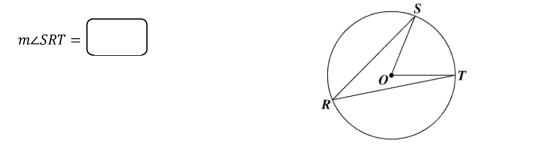
- A. \overline{HJ} should pass through the center of the circle.
- B. The length of \overline{GH} should be equal to the length of \overline{JK} .
- C. The measure of $\angle GHM$ should be equal to the measure of $\angle JKM$.
- D. The measure of $\angle HMK$ should be equal to half the measure of HK
- 5. Chords \overline{WP} and \overline{KZ} intersect at point *L* in the circle shown.



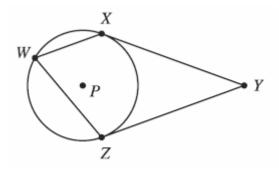
What is the length of \overline{KZ} ?

- A. 7.5
- B. 9
- C. 10
- D. 12

6. In circle $0, m \angle SOT = 68^{\circ}$. What is $m \angle SRT$?



7. Circle *P* has tangents \overline{XY} and \overline{ZY} and chords \overline{WX} and \overline{WZ} , as shown in this figure. The measure of $\angle ZWX = 70^{\circ}$.



What is the measure, in degrees, of $\angle XYZ$?

- A. 20°
- B. 35°
- C. 40°
- D. 55°

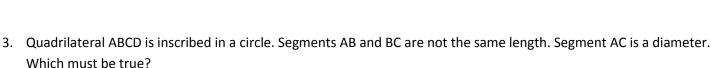
MAFS.912.G-C.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies	creates or provides steps for the	solves problems that use the	proves the unique
inscribed and	construction of the inscribed and	incenter and circumcenter of a	relationships
circumscribed	circumscribed circles of a triangle; uses	triangle; justifies properties of	between the
circles of a	properties of angles for a quadrilateral	angles of a quadrilateral that is	angles of a triangle
triangle	inscribed in a circle; chooses a property	inscribed in a circle; proves	or quadrilateral
	of angles for a quadrilateral inscribed in	properties of angles for a	inscribed in a circle
	a circle within an informal argument	quadrilateral inscribed in a circle	

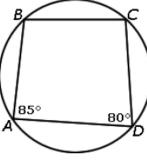
- 1. The center of the inscribed circle of a triangle has been established. Which point on one of the sides of a triangle should be chosen to set the width of the compass?
 - A. intersection of the side and the median to that side
 - B. intersection of the side and the angle bisector of the opposite angle
 - C. intersection of the side and the perpendicular passing through the center
 - D. intersection of the side and the altitude dropped from the opposite vertex
- 2. Quadrilateral ABCD is inscribed in a circle as shown in the diagram below.

If $m \angle A = 85^{\circ}$ and $m \angle D = 80^{\circ}$, what is the $m \angle B$?

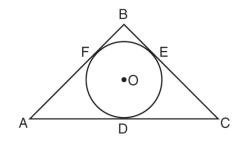
- A. 80°
- B. 85°
- C. 95°
- D. 100°



- A. ABCD is a trapezoid.
- B. ABCD is a rectangle.
- C. ABCD has at least two right angles.
- D. ABCD has an axis of symmetry.
- 4. Which statement is valid when a circumscribed circle of an obtuse triangle is constructed?
 - A. The longest side of the triangle lies on the diameter of the circle.
 - B. The circle is drawn inside the triangle touching all 3 sides.
 - C. The center of the circle is in the interior of the triangle.
 - D. The vertices of the triangle lie on the circle.



5. In the diagram below, \overline{AB} , \overline{BC} , and \overline{AC} are tangents to circle O at points F, E, and D, respectively, AF = 6, CD = 5, and BE = 4.



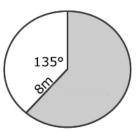
What is the perimeter of $\triangle ABC$?

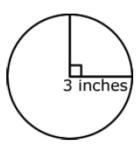
- A. 15
- B. 25
- C. 30
- D. 60

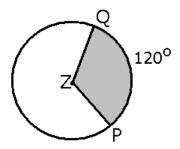
MAFS.912.G-C.2.5 EOC Practice

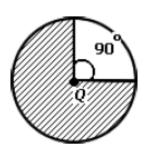
Level 2	Level 3	Level 4	Level 5
identifies a	applies similarity to solve	derives the formula for the area	proves that the length of the
sector area of a	problems that involve the length	of a sector and uses the formula	arc intercepted by an angle is
circle as a	of the arc intercepted by an	to solve problems; derives, using	proportional to the radius,
proportion of	angle and the radius of a circle;	similarity, the fact that the length	with the radian measure of
the entire circle	defines radian measure as the	of the arc intercepted by an angle	the angle being the constant
	constant of proportionality	is proportional to the radius	of proportionality

- 1. What is the area of the shaded sector?
 - A. 5π square meters
 - B. 10π square meters
 - C. 24π square meters
 - D. 40π square meters
- 2. What is the area of the 90° sector?
 - A. $\frac{3\pi}{4}$ square inches
 - B. $\frac{3\pi}{2}$ square inches
 - C. $\frac{9\pi}{4}$ square inches
 - D. $\frac{9\pi}{2}$ square inches
- 3. What is the area of the shaded sector if the radius of circle Z is 5 inches?
 - A. $\frac{25\pi}{3}$ square inches
 - B. 25π square inches
 - C. $\frac{25\pi}{4}$ square inches
 - D. 5π square inches
- 4. What is the area of the shaded sector, given circle Q has a diameter of 10?
 - A. $18\frac{3}{4}\pi$ square units
 - B. 25π square units
 - C. $56\frac{1}{4}\pi$ square units
 - D. 75π square units









8. In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π .

- 5. Given: Three concentric circles with the center O.
 - $\overline{KL} \cong \overline{LN} \cong \overline{NO}$ KP = 42 inches

Which is closest to the area of the shaded region?

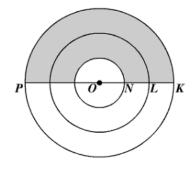
- A. 231 sq in.
- B. 308 sq in.
- C. 539 sq in.
- D. 616 sq in.
- 6. The minute hand on a clock is 10 centimeters long and travels through an arc of 108° every 18 minutes.

Which measure is closest to the length of the arc the minute hand travels through during this 18 —minute period?

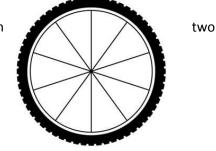
- A. 3 cm
- B. 6 *cm*
- C. 9.4 *cm*
- D. 18.8 cm
- 7. The spokes of a bicycle wheel form 10 congruent central angles. The diameter of the circle formed by the outer edge of the wheel is 18 inches.

What is the length, to the nearest 0.1 inch, of the outer edge of the wheel between consecutive spokes?

- A. 1.8 inches
- B. 5.7 inches
- C. 11.3 inches
- D. 25.4 inches

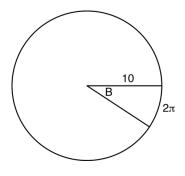


108°



What is the measure of angle B, in radians?

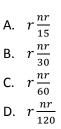
- A. $10 + 2\pi$
- B. 20π
- $\frac{\pi}{5}$ C.
- D. $\frac{5}{\pi}$



MAFS.912.G-GMD.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
gives an informal	uses dissection arguments	sequences an informal limit	explains how to
argument for the formulas	and Cavalier's principle for	argument for the circumference of	derive a formula using
for the circumference of a	volume of a cylinder,	a circle, area of a circle, volume of a	an informal argument
circle and area of a circle	pyramid, and cone	cylinder, pyramid, and cone	

1. To estimate the area of a circle, Irene divided the circle into 30 congruent sectors. Then she combined pairs of sectors into shapes as shown below. As the shapes resemble rectangles, she treats the shapes as rectangles with the height r (radius) and the base equal to the length of the curved side of one sector. What is the area of each shape?



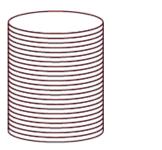
2. The prism can be cut into three pyramids with the shaded faces congruent. If the shaded faces are considered as bases, then all three pyramids have the same height, h. Therefore the pyramids have equal volumes. What is the volume of each pyramid?

C. $\frac{1}{3}Ar$

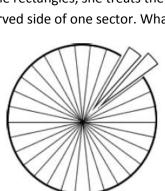
D.
$$-A^{-}_{3}A^{-}_{3}$$

3. Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.



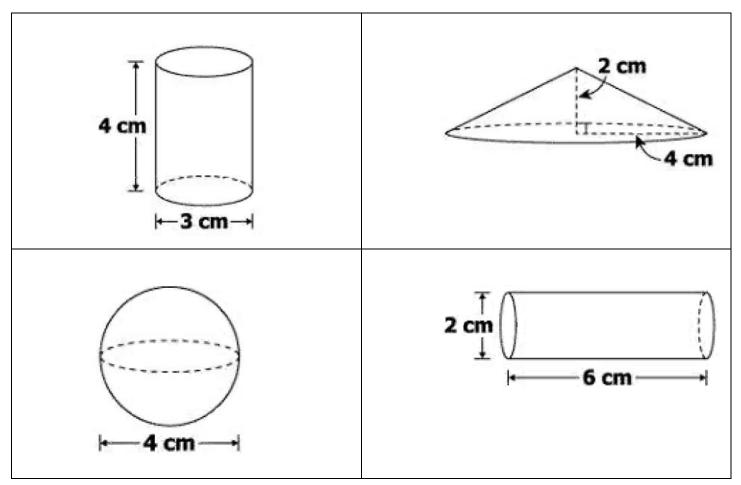
B: base area



A: base area

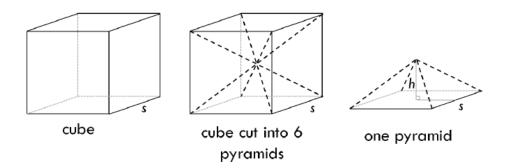
two sectors combined

4. Two cylinders, a sphere, and a cone are shown. Select the two objects with the same volume.



- 5. According to Cavalieri's principle, under what conditions are the volumes of two solids equal?
 - A. When the cross-sectional areas are the same at every level
 - B. When the areas of the bases are equal and the heights are equal
 - C. When the cross-sectional areas are the same at every level and the heights are equal
 - D. When the bases are congruent and the heights are equal

6. Sasha derived the formula for the volume of a square pyramid. She started by dividing a cube into 6 identical square pyramids. The top vertex of each pyramid meets at the central point in the cube, with the cube's diagonals as the edges.



V = the volume of a pyramid; s = side length of base, h = height of pyramid

The steps of Sasha's work are shown.

- Step 1: 6V = s³
- Step 2: $V = \frac{1}{3}s^3$

Maggie also derived the formula for volume of a square pyramid.

• Maggie's result is $V = \frac{1}{3}s^2h$.

The formulas derived by Sasha and Maggie can both be used to correctly calculate the volume of a square pyramid. What are the best next steps for Sasha to take to prove that either formula can be used to find the volume of a square pyramid?

A	١.	

step 3	2h = s
step 4	$V = \frac{1}{6}(2h)^3$
step 5	$V = \frac{1}{3}8h^3$

C.

step 3	2s = h
step 4	$s = \frac{1}{2}h$
step 5	$V = \frac{1}{6}s^2(s)$
step 6	$V = \frac{1}{6}s^2\left(\frac{1}{2}h\right)$

step 3	2h = s
step 4	$V = \frac{1}{6}s^2(s)$
step 5	$V = \frac{1}{6}s^2(2h)$

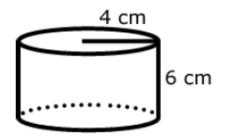
D.

step 3	2s = h
step 4	$s = \frac{1}{2}h$
step 5	$V = \frac{1}{6} \left(\frac{1}{2}h\right)^3$
step 6	$V = \frac{1}{6} \left(\frac{1}{8}\right) h^3$

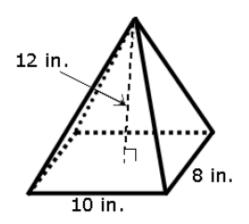
MAFS.912.G-GMD.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
substitutes given dimensions	finds a dimension,	solves problems involving the volume	finds the volume of
into the formulas for the	when given a graphic	of composite figures that include a	composite figures
volume of cylinders,	and the volume for	cube or prism, and a cylinder,	with no graphic;
pyramids, cones, and	cylinders, pyramids,	pyramid, cone, or sphere (a graphic	finds a dimension
spheres, given a graphic, in a	cones, or spheres	would be given); finds the volume	when the volume is
real-world context		when one or more dimensions are	changed
		changed	

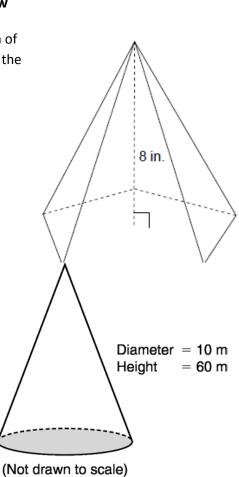
- 1. Find the volume of the cylinder.
 - A. 452.2 cubic cm
 - B. 301.4 cubic cm
 - C. 150.7 cubic cm
 - D. 75.4 cubic cm



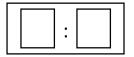
- 2. Find the volume of the rectangular pyramid.
 - A. 72 cubic inches
 - B. 200 cubic inches
 - C. 320 cubic inches
 - D. 960 cubic inches



- 3. This right pentagonal pyramid has a height of 8 inches and a base area of 61.94 square inches. To the nearest hundredth, what is the volume of the pyramid?
 - A. 80.00 cubic inches
 - B. 165.17 cubic inches
 - C. 240.00 cubic inches
 - D. 495.52 cubic inches
- 4. What is the volume of the cone shown?
 - A. $500\pi m^3$
 - B. $1,500\pi m^3$
 - C. $2,000\pi m^3$
 - D. $3,000\pi m^3$



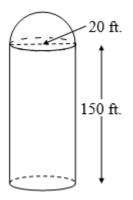
- 5. A cylinder has a volume of 300π cubic centimeters and a base with a circumference of 10π centimeters. What is the height of the cylinder?
 - A. 30 cm
 - B. 15 cm
 - C. 12 cm
 - D. 3 cm
- 6. The ratio of the volume of two spheres is 8:27. What is the ratio of the lengths of the radii of these two spheres?



- 7. The height of a cylinder is 9.5 centimeters. The diameter of this cylinder is 1.5 centimeters longer than the height. Which is closest to the volume of the cylinder?
 - A. 1,150π
 - B. 287π
 - C. 165π
 - D. 105π

Circles, Geometric Measurement, and Geometric Properties with Equations - Student Packet

- 8. The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
 - A. 3591
 - B. 65
 - C. 55
 - **D.** 4
- 9. A grain storage silo consists of a cylinder and a hemisphere. The diameter of the cylinder and the hemisphere is 20 feet. The cylinder is 150 feet tall.



What is the volume of the silo?

A.
$$\frac{17000\pi}{3} ft^{3}$$

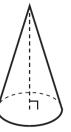
B. $\frac{47000\pi}{3} ft^{3}$
C. $\frac{49000\pi}{3} ft^{3}$
D. $\frac{182000\pi}{3} ft^{3}$

MAFS.912.G-GMD.2.4 EOC Practice

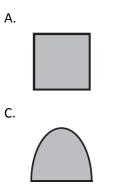
Level 2	Level 3	Level 4	Level 5
identifies the	identifies a three-dimensional	identifies a three-dimensional object	identifies a three-
shapes of two-	object generated by rotations	generated by rotations of a closed	dimensional object
dimensional	of a triangular and rectangular	two-dimensional object about a line	generated by rotations,
cross- sections	object about a line of	of symmetry of the object; identifies	about a line of
formed by a	symmetry of the object;	the location of a nonhorizontal or	symmetry, of an open
vertical or	identifies the location of a	nonvertical slice that would give a	two-dimensional object
horizontal plane	horizontal or vertical slice that	particular cross-section; draws the	or a closed two-
	would give a particular cross-	shape of a particular two-	dimensional object with
	section; draws the shape of a	dimensional cross-section that is the	empty space between
	particular two-dimensional	result of a nonhorizontal or	the object and the line of
	cross-section that is the result	nonvertical slice of a three-	symmetry; compares and
	of horizontal or vertical slice of	dimensional shape; compares and	contrasts different types
	a three-dimensional shape	contrasts different types of slices	of rotations

- 1. An isosceles right triangle is placed on a coordinate grid. One of its legs is on the x-axis and the other on the y-axis. Which describes the shape created when the triangle is rotated about the x axis?
 - A. Cone
 - B. Cylinder
 - C. Pyramid
 - D. Sphere
- 2. A rectangle will be rotated 360° about a line which contains the point of intersection of its diagonals and is parallel to a side. What three-dimensional shape will be created as a result of the rotation?
 - A. Cube
 - B. Rectangular Prism
 - C. Cylinder
 - D. a sphere
- 3. Which of the following figures could be produced by translating a polygon back and forth in a direction perpendicular to the plane containing the figure?
 - A. Cone
 - B. Cylinder
 - C. Prism
 - D. Sphere

- 4. Which of the following is the best description for the resulting three-dimensional figure if a right triangle is rotated about the line containing its hypotenuse?
 - A. a cone with slant height the same length as the longest leg
 - B. a pyramid with triangular base
 - C. two cones sharing the same circular base with apexes opposite each other
 - D. a cone with slant height the same length as the shortest leg
- 5. William is drawing pictures of cross sections of the right circular cone below.



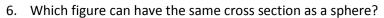
Which drawing cannot be a cross section of a cone?

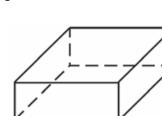


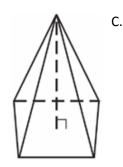
A.

D.

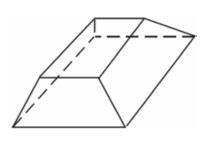
Β.



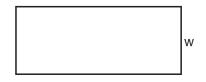




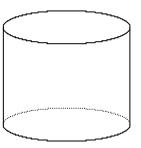
D.



7. If the rectangle below is continuously rotated about side w, which solid figure is formed?



- A. pyramid
- B. rectangular prism
- C. cone
- D. cylinder
- 8. What shape is the cross section formed by the intersection of a cone and a plan parallel to the base of the cone?
 - A. Circle
 - B. trapezoid
 - C. oval
 - D. triangle
- 9. Andrea claims that any two cross sections of a cylinder that lie on parallel planes are congruent.



Is Andrea correct? If not, how can she modify her claim to be correct?

- A. No; any two cross sections of a cylinder that lie on planes parallel to the bases of the cylinder are congruent.
- B. No; any two cross sections of a cylinder that lie on planes parallel to a plane containing the axis of rotation are congruent.
- C. No; any two cross sections of a cylinder that lie on planes containing the axis of rotation are congruent.
- D. Andrea is correct.
- 10. Erin drew a three-dimensional figure with an intersecting plane to show a circular cross section. She then noticed that all cross sections parallel to the one she drew would also be circles. What additional information would allow you to conclude that Erin's figure was a cylinder?
 - A. The centers of the circular cross sections lie on a line.
 - B. The circular cross sections are congruent.
 - C. The circular cross sections are similar but not congruent.
 - D. The figure also has at least one rectangular cross section.

MAFS.912.G-GPE.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
determines the	completes the square to find the	derives the equation of the	derives the equation of a
center and radius	center and radius of a circle given by	circle using the	circle using the Pythagorean
of a circle given	its equation; derives the equation of	Pythagorean theorem	theorem when given
its equation in	a circle using the Pythagorean	when given coordinates of	coordinates of a circle's
general form	theorem, the coordinates of a circle's	a circle's center and a point	center as variables and the
	center, and the circle's radius	on the circle	circle's radius as a variable

1. A circle has this equation.

$$x^2 + y^2 + 4x - 10y = 7$$

What are the center and radius of the circle?

- A. center: (2, −5)
 radius: 6
- B. center: (−2, 5)radius: 6
- C. center: (2, -5) radius: 36
- D. center: (-2, 5) radius: 36
- 2. The equation $x^2 + y^2 4x + 2y = b$ describes a circle.

Part A

Determine they-coordinate of the center of the circle. Enter your answer in the box.

Part B

The radius of the circle is 7 units. What is the value of b in the equation? Enter your answer in the box.

- 3. What is the radius of the circle described by the equation $(x 2)^2 + (y + 3)^2 = 25$?
 - A. 4
 - B. 5
 - C. 25
 - D. 625

- 4. What is the equation of a circle with radius 3 and center (3, 0)?
 - A. $x^{2} + y^{2} 6x = 0$ B. $x^{2} + y^{2} + 6x = 0$ C. $x^{2} + y^{2} - 6x + 6 = 0$ D. $x^{2} + y^{2} - 6y + 6 = 0$
- 5. Given: Circle *W*

W(-4, 6) Radius = 10 unitsWhich point lies on circle W?

- A. *A*(0, 4)
- B. *B*(2,10)
- C. C(4, 0)
- D. *D*(6, 16)
- 6. The equation $(x 1)^2 + (y 3)^2 = r^2$ represents circle *A*. The point *B*(4, 7) lies on the circle. What is *r*, the length of the radius of circle *A*?
 - A. √13
 - B. 5
 - C. $5\sqrt{5}$
 - D. √137
- 7. Which is the equation of a circle that passes through (2, 2) and is centered at (5, 6)?
 - A. $(x-6)^2 + (y-5)^2 = 25$ B. $(x-5)^2 + (y-6)^2 = 5$ C. $(x+5)^2 + (y+6)^2 = 25$ D. $(x-5)^2 + (y-6)^2 = 25$
- 8. Which is the equation of a circle that has a diameter with endpoints (1,3) and (-3,1)?
 - A. $(x + 1)^2 + (y 2)^2 = 10$ B. $(x + 1)^2 + (y - 2)^2 = 20$
 - C. $(x+1)^2 + (y-2)^2 = 5$
 - D. $(x-1)^2 + (y-2)^2 = 5$

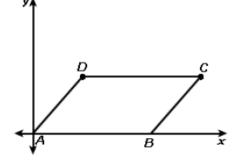
MAFS.912.G-GPE.2.4 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses coordinates	uses coordinates to prove	uses coordinates to prove or disprove	completes an
to prove or	or disprove that a figure is	properties of triangles, properties of circles,	algebraic proof or
disprove that a	a square, right triangle, or	properties of quadrilaterals without a	writes an explanation
figure is a	rectangle; uses coordinates	graph; provide an informal argument to	to prove or disprove
parallelogram	to prove or disprove	prove or disprove properties of triangles,	simple geometric
	properties of triangles,	properties of circles, properties of	theorems
	properties of circles,	quadrilaterals; uses coordinates to prove or	
	properties of quadrilaterals	disprove properties of regular polygons	
	when given a graph	when given a graph	

1. The diagram shows quadrilateral ABCD.

Which of the following would prove that ABCD is a parallelogram?

- A. Slope of \overline{AD} = Slope of \overline{BC} Length of \overline{AD} = Length of \overline{BC}
- B. Slope of \overline{AD} = Slope of \overline{BC} Length of \overline{AB} = Length of \overline{AD}
- C. Length of \overline{AD} = Length of \overline{BC} = Length of \overline{DC}
- D. Length of \overline{AD} = Length of \overline{BC} = Length of \overline{AB}



- 2. Given the coordinates of A(3, 6), B(5, 2), and C(9, 4), which coordinates for D make ABCD a square?
 - A. (6,7)
 - B. (7,8)
 - C. (7,9)
 - D. (8,7)
- 3. Jillian and Tammy are considering a quadrilateral *ABCD*. Their task is to prove is a square.
 - Jillian says, "We just need to show that the slope of AB equals the slope of CD and the slope of BC equals the slope AD."
 - Tammy says, "We should show that AC = BD and that $(slope \ of \ \overline{AC}) \times (slope \ of \ \overline{BD}) = -1$."

Whose method of proof is valid?

- A. Only Jillian's is valid.
- B. Only Tammy's is valid.
- C. Both are valid.
- D. Neither is valid.

- 4. Which type of triangle has vertices at the points R(2, 1), S(2, 5), and T(4, 1)?
 - A. right
 - B. acute
 - C. isosceles
 - D. equilateral
- 5. The vertices of a quadrilateral are M(-1, 1), N(1, -2), O(5, 0), and P(3, 3). Which statement describes Quadrilateral MNOP?
 - A. Quadrilateral MNOP is a rectangle.
 - B. Quadrilateral MNOP is a trapezoid.
 - C. Quadrilateral MNOP is a rhombus but not a square.
 - D. Quadrilateral MNOP is a parallelogram but not a rectangle.
- 6. Triangle ABC has vertices with A(x,3), B(-3,-1), and C(-1,-4). Determine and state a value of x that would make triangle a right triangle.

MAFS.912.G-GPE.2.5 EOC Practice

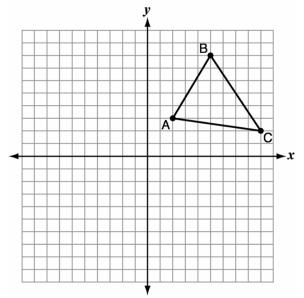
Level 2	Level 3	Level 4	Level 5
identifies that	creates the equation of a line that is	creates the equation of a line	proves the slope criteria
the slopes of	parallel given a point on the line and	that is parallel given a point on	for parallel and
parallel lines are	an equation, in slope-intercept	the line and an equation, in a	perpendicular lines; writes
equal	form, of the parallel line or given	form other than slope-	equations of parallel or
	two points (coordinates are integral)	intercept; creates the equation	perpendicular lines when
	on the line that is parallel; creates	of a line that is perpendicular	the coordinates are
	the equation of a line that is	that passes through a specific	written using variables or
	perpendicular given a point on the	point when given two points or	the slope and y-intercept
	line and an equation of a line, in	an equation in a form other	for the given line contains
	slope- intercept form	than slope-intercept	a variable

1. Which statement is true about the two lines whose equations are given below?

$$3x - 5y = -3$$
$$-2x + y = -8$$

- A. The lines are perpendicular.
- B. The lines are parallel.
- C. The lines coincide.
- D. The lines intersect, but are not perpendicular.
- 2. An equation of a line perpendicular to the line represented by the equation $y = -\frac{1}{2}x 5$ and passing through (6, -4) is
 - A. $y = -\frac{1}{2}x + 4$ B. $y = -\frac{1}{2}x - 1$
 - C. y = 2x + 14
 - D. y = 2x 16
- 3. The equation of a line containing one leg of a right triangle is y = -4x. Which of the following equations could represent the line containing the other leg of this triangle?
 - A. $y = -\frac{1}{4}x$ B. $y = \frac{1}{4}x + 2$ C. y = 4xD. y = -4x + 2

4. $\triangle ABC$ with vertices A(2,3), B(5,8), and C(9,2) is graphed on the coordinate plane below.



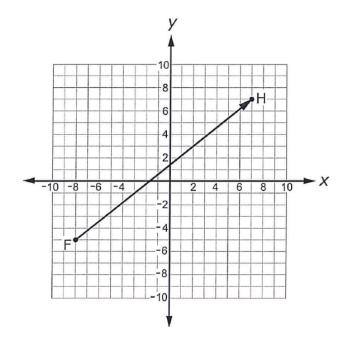
Which equation represents the altitude of $\triangle ABC$ from vertex *B*?

- A. y = -11x + 55
- B. y = -11x + 63
- C. y = 7x 36
- D. y = 7x 27
- 5. Which equation describes a line that passes through (6, -8) and is perpendicular to the line described by 4x 2y = 6?
 - A. $y = -\frac{1}{2}x 5$ B. $y = -\frac{1}{2}x - 3$ C. y = 2x - 3D. y = 2x - 20
- 6. Write an equation in point-slope form for the perpendicular bisector of the segment with endpoints A(-2, 2) and B(5, 4).
 - A. $y-3 = -\frac{7}{2}(x-1.5)$ B. $y-3 = \frac{2}{3}(x-1.5)$ C. $y-1 = -\frac{2}{7}(x-3.5)$ D. $y-1 = \frac{7}{2}(x-3.5)$

MAFS.912.G-GPE.2.6 EOC Practice

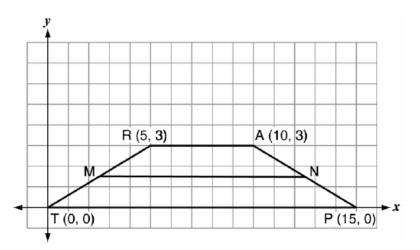
Level 2	Level 3	Level 4	Level 5
finds the point on a line	finds the point on a line	finds the endpoint on a	finds the point on a line
segment that partitions the	segment that partitions, with	directed line segment	segment that partitions or
segment in a given ratio of	no more than five partitions,	given the partition ratio,	finds the endpoint on a
1 to 1, given a visual	the segment in a given ratio,	the point at the	directed line segment when
representation of the line	given the coordinates for the	partition, and one	the coordinates contain
segment	endpoints of the line segment	endpoint	variables

- 1. Given A(0,0) and B(60,60), what are the coordinates of point M that lies on segment AB, such that AM: MB = 2:3?
 - A. (24, 24)
 - B. (24, 36)
 - C. (40, 40)
 - D. (40,90)
- 2. Point *G* is drawn on the line segment so that the ratio of FG to GH is 5 to 1. What are the coordinates of point G?



- A. (4, 4.6)
- B. (4.5, 5)
- C. (-5.5, -3)
- D. (-5, -2.6)

- 3. A city map is placed on a coordinate grid. The post office is located at the point P(5, 35), the library is located at the point L(15, 10), and the fire station is located at the point F(9, 25). What is the ratio of the length of \overline{PF} to the length of \overline{LF} ?
 - A. 2:3
 - B. 3:2
 - C. 2:5
 - D. 3:5
- 4. Trapezoid TRAP is shown below.



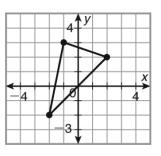
What is the length of midsegment \overline{MN} ?

- A. 10
- B. $\frac{25}{2}$
- C. $\sqrt{234}$
- D. 100
- 5. Directed line segment *PT* has endpoints whose coordinates are P(-2, 1) and T(4, 7). Determine the coordinates of point *J* that divides the segment in the ratio 2 to 1.
- 6. What are the coordinates of the point on the directed line segment from K(-5, -4) to L(5,1) that partitions the segment into a ratio of 3 to 2?
 - A. (-3, -3)
 - B. (-1, -2)
 - C. $(0, -\frac{3}{2})$
 - D. (1,−1)

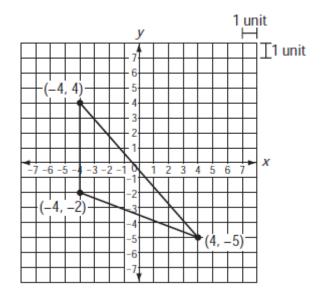
MAFS.912.G-GPE.2.7 EOC Practice

Level 2	Level 3	Level 4	Level 5
finds areas and	when given a graphic, finds area	finds area and perimeter of	finds area and
perimeters of right	and perimeter of regular	irregular polygons that are	perimeter of shapes
triangles, rectangles, and	polygons where at least two	shown on the coordinate plane;	when coordinates
squares when given a	sides have a horizontal or	finds the area and perimeter of	are given as variables
graphic in a real-world	vertical side; finds area and	shapes when given coordinates	-
context	perimeter of parallelograms		

- 1. Two of the vertices of a triangle are (0, 1) and (4, 1). Which coordinates of the third vertex make the area of the triangle equal to 16?
 - A. (0,-9)
 - B. (0, 5)
 - C. (4, -7)
 - D. (4,-3)
- 2. On a coordinate plane, a shape is plotted with vertices of (3, 1), (0, 4), (3, 7), and (6, 4). What is the area of the shape if each grid unit equals one centimeter?
 - A. 18 cm²
 - B. 24 *cm*²
 - C. 36 *cm*²
 - D. 42 *cm*²
- 3. The endpoints of one side of a regular pentagon are (-1, 4) and (2, 3). What is the perimeter of the pentagon?
 - A. $\sqrt{10}$
 - B. $5\sqrt{10}$
 - C. $5\sqrt{2}$
 - D. $25\sqrt{2}$
- 4. Find the perimeter of the triangle to the nearest whole unit.
 - A. 12
 - B. 14
 - C. 16
 - D. 18



5. A triangle is shown on the coordinate plane below.



What is the area of the triangle?

- A. 12 square units
- B. 24 square units
- C. 36 square units
- D. 48 square units

MFAS Geometry CPALMS Review Packet Circles, Geometric Measurement, and **Geometric Properties**

Table of Contents	
MAFS.912.G-C.1.1	4
Dilation of a Line: Center on the Line	4
Dilation of a Line: Factor of Two.	5
Dilation of a Line: Factor of One Half	6
Dilation of a Line Segment	7
MAFS.912.G-C.1.2	8
Central and Inscribed Angles	8
Circles with Angles	9
Inscribed Angle on Diameter	9
Tangent Line and Radius	
MAFS.912.G-C.1.3	
Inscribed Circle Construction	
Circumscribed Circle Construction	
Inscribed Quadrilaterals	
MAFS.912.G-C.2.5	
Arc Length	
Sector Area	
Arc Length and Radians	
Deriving the Sector Area Formula	
MAFS.912.G-GMD.1.1	
Area and Circumference – 1	
Area and Circumference – 2	
Area and Circumference – 3	
Volume of a Cylinder	19
Volume of a Cone	
MAFS.912.G-GMD.1.3	21
Volume of a Cylinder	21
Snow Cones	
Do Not Spill the Water!	
The Great Pyramid	23
MAFS.912.G-GMD.2.4	24
2D Rotations of Triangles	24
2D Rotations of Rectangles	
Working Backwards – 2D Rotations	
Slice It.	
Slice of a Cone	
Circles, Geometric Measurement, and Geometric Properties with Equations – Student Packet	2

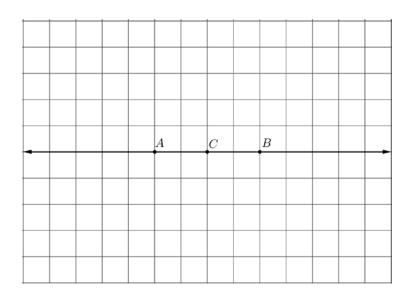
Inside the Box	
MAFS.912.G-GPE.1.1	29
Derive the Circle – Specific Points	29
Derive the Circle – General Points	
Complete the Square for Center-Radius	
Complete the Square for Center-Radius 2	
MAFS.912.G-GPE.2.4	
Describe the Quadrilateral	
Type of Triangle	
Diagonals of a Rectangle	
Midpoints of Sides of a Quadrilateral	
MAFS.912.G-GPE.2.5	
Writing Equations for Parallel Lines	
Writing Equations for Perpendicular Lines	
Proving Slope Criterion for Parallel Lines – One	
Proving Slope Criterion for Parallel Lines – Two	
Proving Slope Criterion for Perpendicular Lines – One	
Proving Slope Criterion for Perpendicular Lines – Two	
MAFS.912.G-GPE.2.6	
Partitioning a Segment	
Centroid Coordinates	
MAFS.912.G-GPE.2.7	
Pentagon's Perimeter	
Perimeter and Area of a Rectangle	40
Perimeter and Area of a Right Triangle	40
Perimeter and Area of an Obtuse Triangle	41

MAFS.912.G-C.1.1			
Level 2	Level 3	Level 4	Level 5
identifies that all circles are similar	uses a sequence of no more than two transformations to prove that two circles are similar	uses the measures of different parts of a circle to determine similarity	explains why all circles are similar

Dilation of a Line: Center on the Line

In the figure, points A, B, and C are collinear.

1. Graph the images of points *A*, *B*, and *C* as a result of a dilation with center at point *C* and scale factor of 1.5. Label the images of *A*, *B*, and *C* as *A'*, *B'*, and *C'*, respectively.

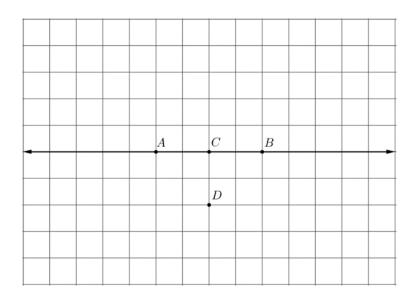


2. Describe the image of \overrightarrow{AB} as a result of this dilation. In general, what is the relationship between a line and its image after dilating about a center on the line?

Dilation of a Line: Factor of Two.

In the figure, the points A, B, and C are collinear.

1. Graph the images of points *A*, *B*, and *C* as a result of dilation with center at point *D* and scale factor equal to 2. Label the images of *A*, *B*, and *C* as *A*', *B*', and *C*', respectively.

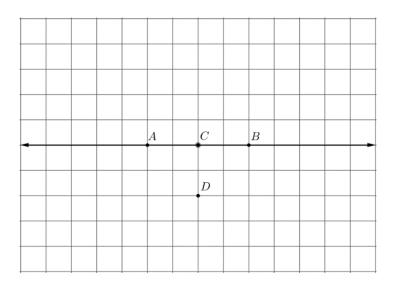


2. Describe the image of \overrightarrow{AB} as a result of the same dilation. In general, what is the relationship between a line and its image after dilating about a center not on the line?

Dilation of a Line: Factor of One Half

In the figure, the points A, B, C are collinear.

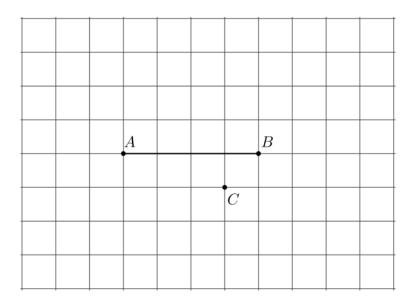
1. Graph the images of points *A*, *B*, *C* as a result of dilation with center at point *D* and scale factor equal to 0.5. Label the images of *A*, *B*, and *C* as *A*', *B*', and *C*', respectively.



2. Describe the image of \overrightarrow{AB} as a result of the same dilation. In general, what is the relationship between a line and its image after dilating about a center not on the line?

Dilation of a Line Segment

1. Given \overline{AB} , draw the image of \overline{AB} as a result of the dilation with center at point *C* and scale factor equal to 2.



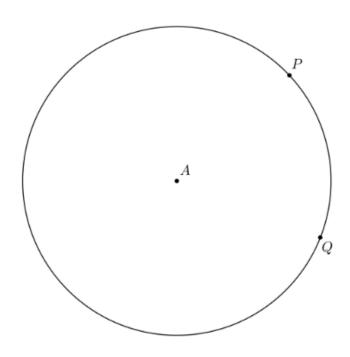
2. Describe the relationship between \overline{AB} and its image.

MAFS.912.G-C.1.2

MA 3.312.3 C.1.2			
Level 2	Level 3	Level 4	Level 5
solves problems	solves problems that use no	solves problems that	solves problems using at least
using the properties	more than two properties	use no more than two	three properties of central
of central angles,	including using the properties of	properties, including	angles, diameters, radii,
diameters, and radii	inscribed angles, circumscribed	using the properties of	inscribed angles, circumscribed
	angles, and chords	tangents	angles, chords, and tangents

Central and Inscribed Angles

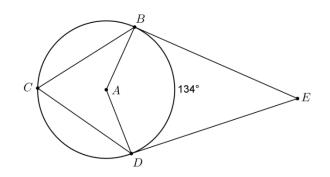
Describe the relationship between an inscribed angle and a central angle that intersect the same arc. Use the circle below to illustrate your reasoning.



Circles with Angles

Use circle A below to answer the following questions. Assume points B, C, and D lie on the circle, segments \overline{BE} and \overline{DE} are tangent to circle A at points B and D, respectively, and the measure of \widehat{BD} is 134°.

- 1. Identify the type of angle represented by $\angle BAD$, $\angle BCD$, and $\angle BED$ in the diagram and then determine each angle measure. Justify your calculations by showing your work.
 - a. $\angle BAD$: $m \angle BAD =$
 - b. $\angle BCD$: $m \angle BCD =$
 - c. $\angle BED$: $m \angle BED =$

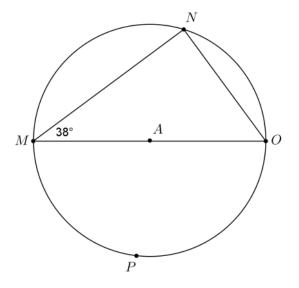


- 2. Describe, in general, the relationship between:
 - a. $\angle BAD$ and $\angle BCD$:
 - b. $\angle BAD$ and $\angle BED$:

Inscribed Angle on Diameter

1. If point A is the center of the circle, what must be true of $m \angle MNO$? Justify your answer.

2. Explain how to find the $m \angle NOM$.



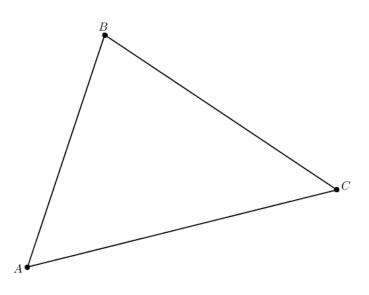
Tangent Line and Radius

1. Line *t* is tangent to circle *O* at point *P*. Draw circle *O*, line *t*, and radius \overline{OP} . Describe the relationship between \overline{OP} and line *t*.

MAFS.912.G-C.1.3	3		
Level 2	Level 3	Level 4	Level 5
identifies	creates or provides steps for the	solves problems that use the	proves the unique
inscribed and	construction of the inscribed and	incenter and circumcenter of a	relationships
circumscribed	circumscribed circles of a triangle; uses	triangle; justifies properties of	between the
circles of a	properties of angles for a quadrilateral	angles of a quadrilateral that is	angles of a triangle
triangle	inscribed in a circle; chooses a property	inscribed in a circle; proves	or quadrilateral
	of angles for a quadrilateral inscribed in	properties of angles for a	inscribed in a circle
	a circle within an informal argument	quadrilateral inscribed in a circle	

Inscribed Circle Construction

Use a compass and straightedge to construct a circle inscribed in the triangle.

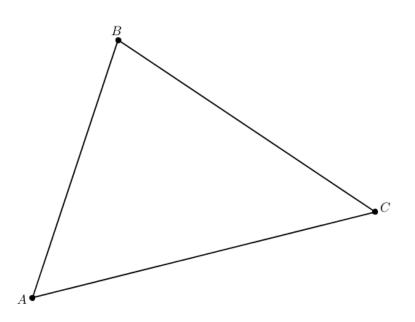


1. What did you construct to locate the center of your inscribed circle?

2. What is the name of the point of concurrency that serves as the center of your inscribed circle?

Circumscribed Circle Construction

Use a compass and straightedge to construct a circle circumscribed about the triangle.

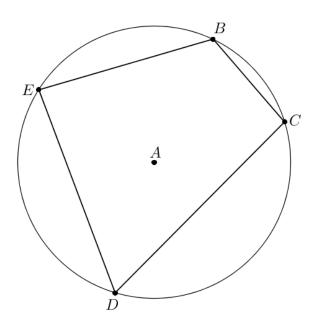


3. What did you construct to locate the center of your circumscribed circle?

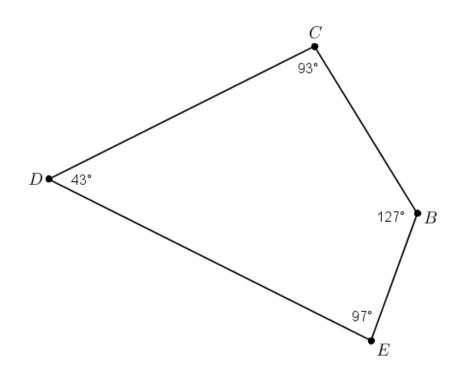
4. What is the name of the point of concurrency that serves as the center of your circumscribed circle?

Inscribed Quadrilaterals

1. Quadrilateral *BCDE* is inscribed in circle *A*. Prove that $\angle EDC$ and $\angle CBE$ are supplementary.



2. Can the quadrilateral below be inscribed in a circle? Explain why or why not.

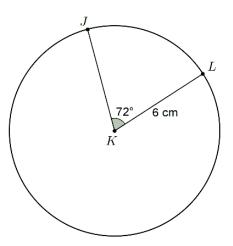


MAFS.912.G-C.2.5

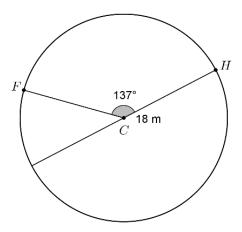
WAI 5.512.0-C.2.3			
Level 2	Level 3	Level 4	Level 5
identifies a	applies similarity to solve	derives the formula for the area	proves that the length of the
sector area of a	problems that involve the length	of a sector and uses the formula	arc intercepted by an angle is
circle as a	of the arc intercepted by an	to solve problems; derives, using	proportional to the radius,
proportion of	angle and the radius of a circle;	similarity, the fact that the length	with the radian measure of
the entire circle	defines radian measure as the	of the arc intercepted by an angle	the angle being the constant
	constant of proportionality	is proportional to the radius	of proportionality

Arc Length

1. Find the length of \hat{JL} of circle K in terms of π . Show all of your work carefully and completely.

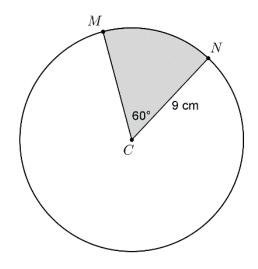


2. Find the length of \widehat{FH} of circle *C*. Round your answer to the nearest hundredth. Show all of your work carefully and completely.

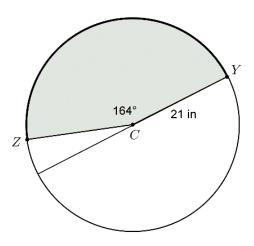


Sector Area

1. Find the area of the shaded sector in terms of π . Show all of your work carefully and completely.



2. Find the area of the shaded sector. Round your answer to the nearest hundredth. Show all of your work carefully and completely.



Arc Length and Radians

Use the similarity of circles to explain why the length of an arc intercepted by an angle is proportional to the radius. That is, given the following diagram:

1. Explain why
$$\frac{L}{l} = \frac{R}{r}$$
.

2. Explain how the fact that arc length is proportional to radius leads to a definition of the radian measure of an angle.

Deriving the Sector Area Formula

1. Write a formula that can be used to find the area of a sector of a circle. Be sure to explain what each variable represents. You may include a diagram in your description.

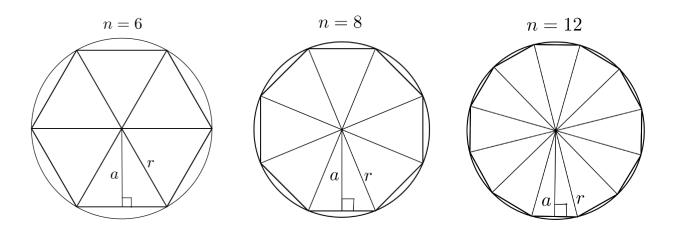
2. Explain and justify the formula you wrote.

MAFS.912.G-GMD.1.1

Level 2	Level 3	Level 4	Level 5
gives an informal	uses dissection arguments	sequences an informal limit	explains how to
argument for the formulas	and Cavalier's principle for	argument for the circumference of	derive a formula using
for the circumference of a	volume of a cylinder,	a circle, area of a circle, volume of a	an informal argument
circle and area of a circle	pyramid, and cone	cylinder, pyramid, and cone	

Area and Circumference – 1

Suppose a regular *n*-gon is inscribed in a circle of radius *r*. Diagrams are shown for n = 6, n = 8, and n = 12.



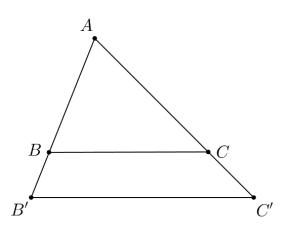
Imagine how the relationship between the *n*-gon and the circle changes as *n* increases.

- 1. Describe the relationship between the area of the *n*-gon and the area of the circle as *n* increases.
- 2. Describe the relationship between the perimeter of the *n*-gon and the circumference of the circle as *n* increases.
- 3. Recall that the area of a regular polygon, A_P , can be found using the formula $A_P = \frac{1}{2}ap$ where a is the apothem and p is the perimeter of the polygon, as shown in the diagram. Consider what happens to a and p in the formula $A_P = \frac{1}{2}ap$ as n increases and derive an equation that describes the relationship between the area of a circle, A, and the circumference of the circle, C.

Area and Circumference – 2

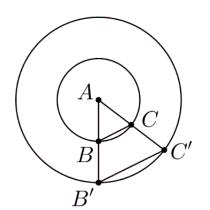
The objective of this exercise is to show that for any circle of radius r, the area of the circle, A(r), can be found in terms of the area of the unit circle, A(1). In other words, show that $A(r) = r^2 \cdot A(1)$.

1. Given $\triangle ABC$ and $\triangle AB'C'$ such that $AB' = r \cdot AB$ and $AC' = r \cdot AC$, show or explain why the Area of $\triangle AB'C' = r^2 \cdot Area$ of $\triangle ABC$.



2. Given two concentric circles with center at A, one of radius 1 (that is, AB = 1) and the other of radius r with r > 1 (that is, AB' = r), so that $AB' = r \cdot AB$ and $AC' = r \cdot AC$.

Let \overline{BC} be one side of regular *n*-gon P_n inscribed in circle *A* of radius 1 and let $\overline{B'C'}$ be one side of regular *n*-gon P'_n inscribed in circle *A* of radius *r*. Using the result from (1), show or explain why Area of $P'_n = r^2 \cdot \text{Area of } P_n$.



3. Finally, show or explain why $A(r) = r^2 \cdot A(1)$.

Area and Circumference – 3

The unit circle is a circle of radius 1. Define π to be the area, A(1), of the unit circle, that is, $\pi = A(1)$.

Let A represent the area and C represent the circumference of a circle of radius r. Assume each of the following is true:

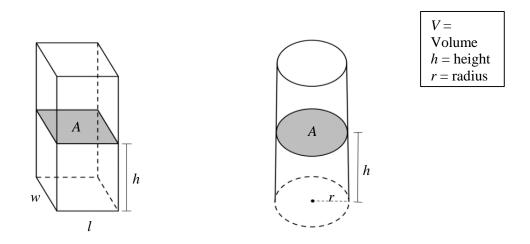
- The area of a circle is equal to half of the product of the circumference and the radius, that is $A = \frac{1}{2} Cr$.
- The area of a circle is equal to r^2 times the area of the unit circle, that is, $A = r^2 \cdot A(1)$.

Use these two assumptions and the above definition of π to derive:

- 1. The formula for the area, *A*, of a circle.
- 2. The formula for the circumference, *C*, of a circle.
- 3. The formula for π in terms of *C* and *d*, the diameter of a circle.

Volume of a Cylinder

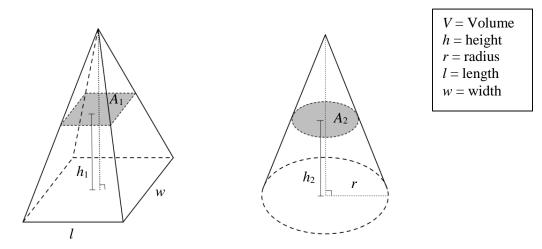
The rectangular prism and the cylinder below have the same height and the same cross-sectional area at any given height above the base. This means that the area of the shaded rectangle, A_1 , is the same as the area of the shaded circle, A_2 when $h_1 = h_2$.



1. Use the formula for the volume of a prism ($V = l \cdot w \cdot h$) to derive and explain the formula for the volume of a cylinder.

Volume of a Cone

The rectangular pyramid and the cone below have the same height and the same cross-sectional area at any given height above the base. This means that the area of the shaded square, A_1 , is the same as the area of the shaded circle, A_2 when $h_1 = h_2$.



1. Use the formula for the volume of a rectangular pyramid ($V = \frac{1}{3} \cdot lwh$) to derive and explain the formula for the volume of a cone.

MAFS.912.G-GMD.1.3			
Level 2	Level 3	Level 4	Level 5
substitutes given dimensions	finds a dimension,	solves problems involving the volume	finds the volume of
into the formulas for the	when given a graphic	of composite figures that include a	composite figures
volume of cylinders,	and the volume for	cube or prism, and a cylinder, pyramid,	with no graphic;
pyramids, cones, and	cylinders, pyramids,	cone, or sphere (a graphic would be	finds a dimension
spheres, given a graphic, in a	cones, or spheres	given); finds the volume when one or	when the volume
real-world context		more dimensions are changed	is changed

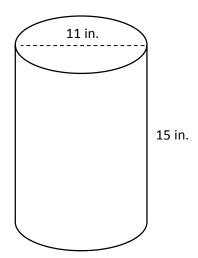
Volume of a Cylinder

The coach at Coastal High School is concerned about keeping her athletes hydrated during practice. She can either buy a case of 24 quart-sized drinks or fill a cylindrical cooler with water and a powder mix. The dimensions of the cylindrical cooler are given below and one quart is equal to 57.75 cubic inches. Which option provides the most drink for her athletes?

1. Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.

Individual Drinks

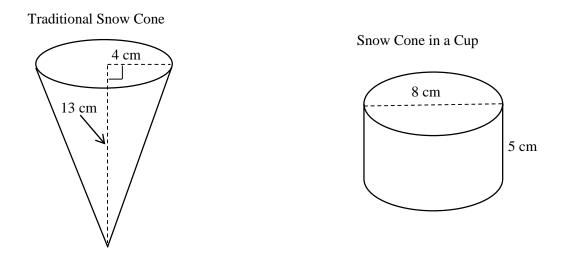
Cylindrical Cooler



Snow Cones

Jennifer loves snow cones and wants to get the most for her money. There are two vendors at the fair selling snow cones for the same price. If the two containers are completely filled and then leveled off across their tops, which will hold the most? If necessary, round off to the nearest cubic centimeter.

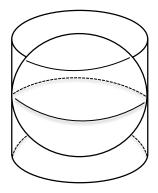
1. Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.



Do Not Spill the Water!

Suppose a ball is completely submerged inside a cylinder filled with water displacing some of the water in the cylinder. Assume the ball and the cylinder both have a diameter of 10 centimeters, and the diameter of the ball is the same as the height of the cylinder.

Determine the volume of water that can remain in the cylinder after the ball is inserted so that the water rises to the top edge of the cylinder without spilling. Look up any formulas you need in your book or notes. Justify your response by showing and/or explaining your work.

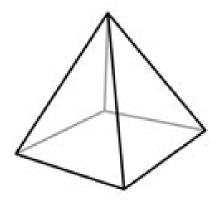


The Great Pyramid

The Great Pyramid of Giza is an example of a square pyramid and is the last surviving structure considered a wonder of the ancient world. The builders of the pyramid used a measure called a cubit, which represents the length of the forearm from the elbow to the tip of the middle finger. One cubit is about 20 inches in length.

Find the height of the Great Pyramid (in cubits) if each base edge is 440 cubits long and the volume of the pyramid is 18,069,330 cubic cubits.

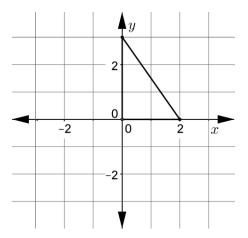
Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.



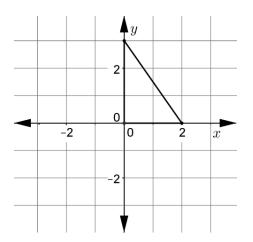
MAFS.912.G-GMD.	2.4		
Level 2	Level 3	Level 4	Level 5
identifies the	identifies a three-dimensional	identifies a three-dimensional object	identifies a three-
shapes of two-	object generated by rotations	generated by rotations of a closed	dimensional object
dimensional	of a triangular and rectangular	two-dimensional object about a line	generated by rotations,
cross- sections	object about a line of	of symmetry of the object; identifies	about a line of
formed by a	symmetry of the object;	the location of a nonhorizontal or	symmetry, of an open
vertical or	identifies the location of a	nonvertical slice that would give a	two-dimensional object
horizontal plane	horizontal or vertical slice that	particular cross-section; draws the	or a closed two-
	would give a particular cross-	shape of a particular two-	dimensional object with
	section; draws the shape of a	dimensional cross-section that is the	empty space between
	particular two-dimensional	result of a nonhorizontal or	the object and the line of
	cross-section that is the result	nonvertical slice of a three-	symmetry; compares and
	of horizontal or vertical slice of	dimensional shape; compares and	contrasts different types
	a three-dimensional shape	contrasts different types of slices	of rotations

2D Rotations of Triangles

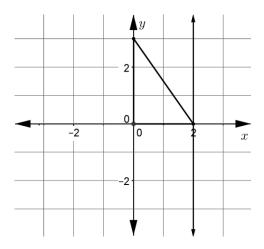
1. Describe in detail the solid formed by rotating a right triangle with vertices at (0, 0), (2, 0), and (0, 3) about the vertical axis. Include the dimensions of the solid in your description.



2. Describe in detail the solid formed by rotating a right triangle with vertices at (0, 0), (2, 0), and (0, 3) about the horizontal axis. Include the dimensions of the solid in your description.

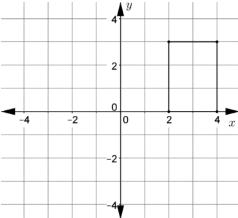


3. Imagine the solid formed by rotating the same right triangle about the line x = 2. Describe this solid in detail

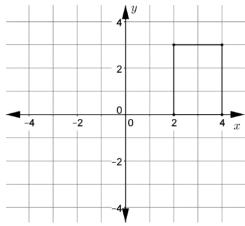


2D Rotations of Rectangles

1. Describe in detail the solid formed by rotating a 2 x 3 rectangle with vertices (2, 0), (4, 0), (2, 3) and (4, 3) about the *x*-axis. Include the dimensions of the solid in your description.

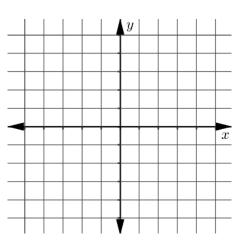


2. Describe in detail the solid formed by rotating a 2 x 3 rectangle with vertices (2, 0), (4, 0), (2, 3), and (4, 3) about the *y*-axis. Include the dimensions of the solid in your description.

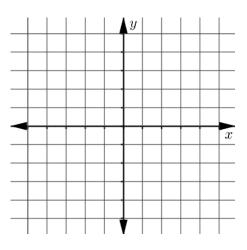


Working Backwards – 2D Rotations

1. Identify and draw a figure that can be rotated around the *y*-axis to generate a sphere.



2. Draw a figure that can be rotated about the *y*-axis to generate the following solid (a hemisphere atop a cone).



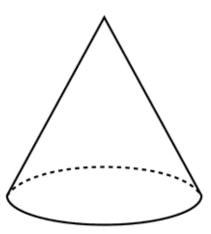
Slice It.

1. Draw and describe the shape of a two-dimensional cross-section that would be visible if you vertically slice the object, perpendicular to the base.

2. Draw and describe the shape of a two-dimensional cross-section that would be visible if you horizontally slice the object, parallel to the base.

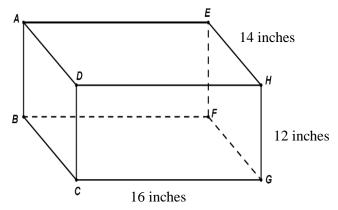
Slice of a Cone

1. Draw three different horizontal cross-sections of the cone that occur at different heights. How are these three cross-sections related?

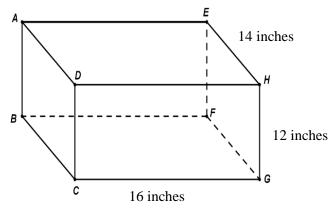


Inside the Box

1. In the space provided, sketch both a horizontal and vertical cross section of the box. Label the dimensions on your sketch.



2. Imagine a cross-section defined by plane *EBCH*. Sketch the cross-section and label the dimensions that you know or can find.



MAFS.912.G-GPE.1.1

MA 5.512.0 01 L.1.			
Level 2	Level 3	Level 4	Level 5
determines the	completes the square to find the	derives the equation of the	derives the equation of a
center and radius	center and radius of a circle given by	circle using the	circle using the Pythagorean
of a circle given	its equation; derives the equation of	Pythagorean theorem	theorem when given
its equation in	a circle using the Pythagorean	when given coordinates of	coordinates of a circle's
general form	theorem, the coordinates of a circle's	a circle's center and a point	center as variables and the
	center, and the circle's radius	on the circle	circle's radius as a variable

Derive the Circle – Specific Points

1. The center of a circle is at (-5, 7) and its radius is 6 units. Derive the equation of the circle using the Pythagorean Theorem. You may use the coordinate plane to illustrate your reasoning.

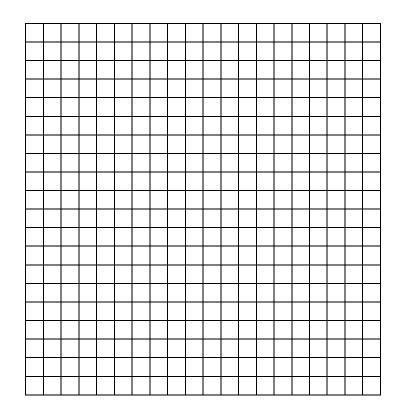
-										
<u> </u>		 								

Derive the Circle – General Points

The standard form of the equation of a circle with center (h, k) and radius r is written as:

$$(x-h)^2 + (y-k)^2 = r^2$$

Show how this equation can be derived from the Pythagorean Theorem. Use the coordinate plane to illustrate your reasoning.



Complete the Square for Center-Radius

The equation of a circle in general form is:

$$x^2 + 6x + y^2 + 5 = 0$$

1. Find the center and radius of the circle. Show all work neatly and completely.

Complete the Square for Center-Radius 2

The equation of a circle in general form is:

 $4x^2 - 16x + 4y^2 - 24y + 16 = 0$

1. Find the center and radius of the circle. Show all work neatly and completely.

MAFS.912.G-GPE.2.	4		
Level 2	Level 3	Level 4	Level 5
uses coordinates to prove or disprove that a figure is a parallelogram	uses coordinates to prove or disprove that a figure is a square, right triangle, or rectangle; uses coordinates to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals when given a graph	uses coordinates to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals without a graph; provide an informal argument to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals; uses coordinates to prove or disprove properties of regular polygons when given a graph	completes an algebraic proof or writes an explanation to prove or disprove simple geometric theorems

Describe the Quadrilateral

1. A quadrilateral has vertices at A(-3, 2), B(-2, 6), C(2, 7) and D(1, 3). Which, if any, of the following describe quadrilateral *ABCD*: parallelogram, rhombus, rectangle, square, or trapezoid? Justify your reasoning.

Type of Triangle

1. Triangle *PQR* has vertices at *P*(8, 2), *Q*(11, 13), and *R*(2, 6). Without graphing the vertices, determine if the triangle is scalene, isosceles, or equilateral. Show all of your work and justify your decision.

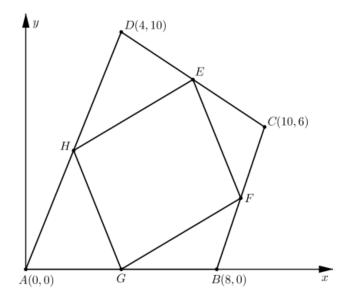
Diagonals of a Rectangle

Three of the vertices of a rectangle have coordinates D(0, 0), A(a, 0), and B(0, b).

- 1. Find the coordinates of point *C*, the fourth vertex.
- 2. Prove that the diagonals of the rectangle are congruent.

Midpoints of Sides of a Quadrilateral

Show that the quadrilateral formed by connecting the midpoints of the sides of quadrilateral *ABCD* (points *E*, *F*, *G*, and *H*) is a parallelogram.



MAFS.912.G-GPE.2.5

Level 2	Level 3	Level 4	Level 5
identifies that	creates the equation of a line that is	creates the equation of a line	proves the slope criteria
the slopes of	parallel given a point on the line and	that is parallel given a point on	for parallel and
parallel lines are	an equation, in slope-intercept	the line and an equation, in a	perpendicular lines; writes
equal	form, of the parallel line or given	form other than slope-	equations of parallel or
	two points (coordinates are integral)	intercept; creates the equation	perpendicular lines when
	on the line that is parallel; creates	of a line that is perpendicular	the coordinates are
	the equation of a line that is	that passes through a specific	written using variables or
	perpendicular given a point on the	point when given two points or	the slope and y-intercept
	line and an equation of a line, in	an equation in a form other	for the given line contains
	slope- intercept form	than slope-intercept	a variable

Writing Equations for Parallel Lines

- 1. In right trapezoid ABCD, $\overline{BC} \parallel \overline{AD}$ and \overline{AD} is contained in the line whose equation is $y = -\frac{1}{2}x + 10$.
 - a. What is the slope of the line containing \overline{BC} ? Briefly explain how you got your answer.

- b. Write an equation in **slope-intercept form** of the line that contains \overline{BC} if *B* is located at (-2, 7). Show your work to justify your answer.
- 2. In rectangle *EFGH*, $\overline{EH} \parallel \overline{FG}$ and \overline{EH} crosses the *y*-axis at (0, -2). If the equation of the line containing \overline{FG} is x + 3y = 12, write the equation of the line containing \overline{EH} in **slope-intercept form.** Show your work to justify your answer.

Writing Equations for Perpendicular Lines

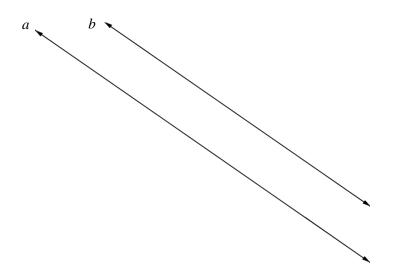
- 1. In right trapezoid *ABCD*, $\overline{AB} \perp \overline{AD}$ and \overline{AD} is contained in the line $y = -\frac{1}{2}x + 10$.
 - a. What is the slope of the line containing \overline{AB} ? Briefly explain how you got your answer.

b. Write an equation in **slope-intercept form** of the line that contains \overline{AB} if *B* is located at (-2, 7). Show your work to justify your answer.

2. In rectangle *EFGH*, $\overline{EF} \perp \overline{FG}$ and \overline{EF} contains the point (0, -4). If the equation of the line containing \overline{FG} is 2x + 6y = 9, write the equation of the line containing \overline{EF} in **slope-intercept form.** Show your work to justify your answer.

Proving Slope Criterion for Parallel Lines – One

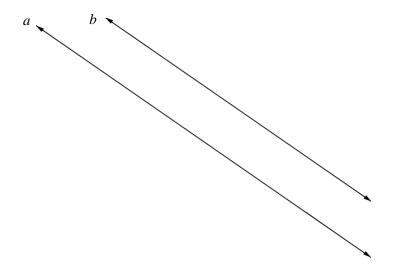
Line *a* is parallel to line *b*. Prove that the slope of line *a* equals the slope of line *b*.



Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Parallel Lines – Two

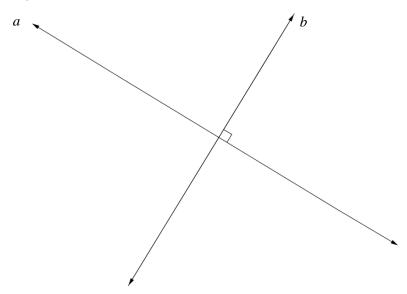
The slope of line *a* equals the slope of line *b*. Prove that line *a* is parallel to line *b*.



Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Perpendicular Lines – One

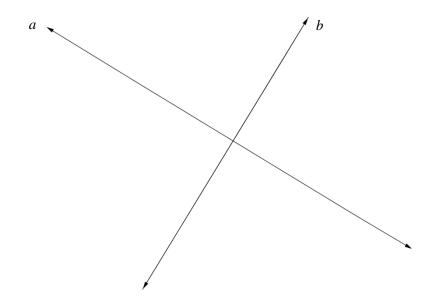
Line *a* is perpendicular to line *b*. Prove that the slopes of line *a* and line *b* are both opposite and reciprocal (or that the product of their slopes is -1).



Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Perpendicular Lines – Two

The slope of line *a* and the slope of line *b* are both opposite and reciprocal. Prove that line *a* is perpendicular to line *b*.



Note: You may draw axes placing the lines in the coordinate plane if you prefer.

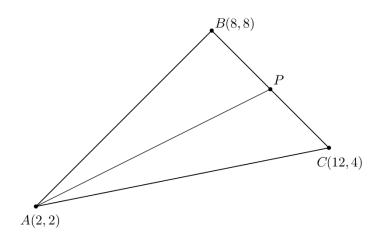
MAFS.912.G-GPE.2.6			
Level 2	Level 3	Level 4	Level 5
finds the point on a line	finds the point on a line	finds the endpoint on a	finds the point on a line
segment that partitions the	segment that partitions, with	directed line segment	segment that partitions or
segment in a given ratio of	no more than five partitions,	given the partition ratio,	finds the endpoint on a
1 to 1, given a visual	the segment in a given ratio,	the point at the	directed line segment when
representation of the line	given the coordinates for the	partition, and one	the coordinates contain
segment	endpoints of the line segment	endpoint	variables

Partitioning a Segment

Given M(-4, 7) and N(12, -1), find the coordinates of point P on \overline{MN} so that P partitions \overline{MN} in the ratio 1:7 (i.e., so that MP:PN is 1:7). Show all of your work and explain your method and reasoning.

Centroid Coordinates

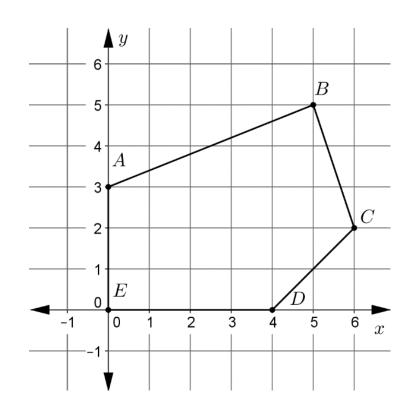
In $\triangle ABC$, \overline{AP} is a median. Find the exact coordinates of a point, *D*, on \overleftrightarrow{AP} so that AD: DP = 2: 1. Show all of your work and explain your method and reasoning.



MAFS.912.G-GPE.2.7			
Level 2	Level 3	Level 4	Level 5
finds areas and	when given a graphic, finds area	finds area and perimeter of	finds area and
perimeters of right	and perimeter of regular	irregular polygons that are	perimeter of shapes
triangles, rectangles, and	polygons where at least two	shown on the coordinate plane;	when coordinates
squares when given a	sides have a horizontal or	finds the area and perimeter of	are given as variables
graphic in a real-world	vertical side; finds area and	shapes when given coordinates	
context	perimeter of parallelograms		

Pentagon's Perimeter

Find the perimeter of polygon *ABCDE* with vertices *A*(0, 3), *B*(5, 5), *C*(6, 2), *D*(4, 0) and *E*(0, 0). Show your work.

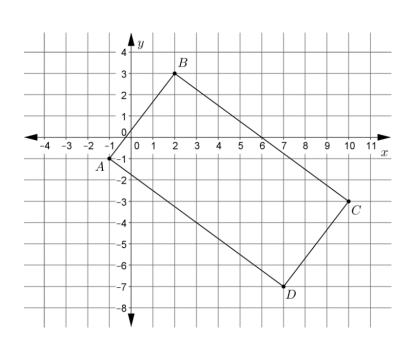


Perimeter and Area of a Rectangle

Find the perimeter and the area of rectangle ABCD with vertices A(-1, -1), B(2, 3), C(10, -3) and D(7, -7). Show your work.

Perimeter _____

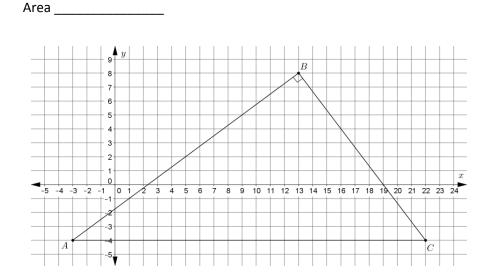
Area _____



Perimeter and Area of a Right Triangle

Find the perimeter and the area of right triangle ABC with vertices A(-3, -4), B(13, 8) and C(22, -4). Show your work.

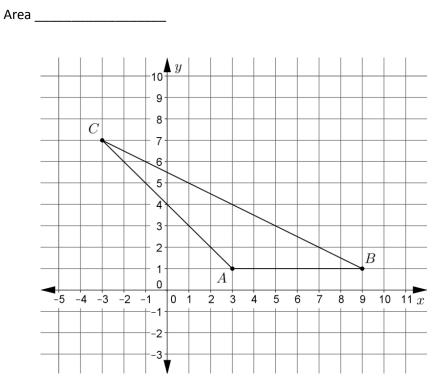
Perimeter _____



Perimeter and Area of an Obtuse Triangle

Find the perimeter and the area of $\triangle ABC$ with vertices A(3, 1), B(9, 1) and C(-3, 7). Show your work. Round to the nearest tenth if necessary.

Perimeter _____



FSA Geometry
End-of-Course
Review Packet
Congruency Similarity and
Right Triangles

Table of Contents	
MAFS.912.G-CO.1.1 EOC Practice	
MAFS.912.G-CO.1.2 EOC Practice	5
MAFS.912.G-CO.1.4 EOC Practice	7
MAFS.912.G-CO.1.5 EOC Practice	9
MAFS.912.G-CO.1.3 EOC Practice	
MAFS.912.G-CO.2.6 EOC Practice	
MAFS.912.G-CO.2.7 EOC Practice	
MAFS.912.G-CO.2.8 EOC Practice	
MAFS.912.G-CO.3.9 EOC Practice	
MAFS.912.G-CO.3.10 EOC Practice	
MAFS.912.G-CO.3.11 EOC Practice	25
MAFS.912.G-CO.4.12 EOC Practice	
MAFS.912.G-CO.4.13 EOC Practice	
MAFS.912.G-SRT.1.1 EOC Practice	
MAFS.912.G-SRT.1.2 EOC Practice	
MAFS.912.G-SRT.1.3 EOC Practice	
MAFS.912.G-SRT.2.4 EOC Practice	
MAFS.912.G-SRT.2.5 EOC Practice	
MAFS.912.G-SRT.3.8 EOC Practice	
MAFS.912.G-SRT.3.6 EOC Practice	51
MAFS.912.G-SRT.3.7 EOC Practice	53

MAFS.912.G-CO.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses definitions to	uses precise definitions that are based on the	analyzes possible	explains whether a possible
choose examples	undefined notions of point, line, distance along	definitions to determine	definition is valid by using
and non-examples	a line, and distance around a circular arc	mathematical accuracy	precise definitions

- Let's say you opened your laptop and positioned the screen so it's exactly at 90°—a right angle—from your keyboard. Now, let's say you could take the screen and push it all the way down beyond 90°, until the back of the screen is flat against your desk. It looks as if the angle disappeared, but it hasn't. What is the angle called, and what is its measurement?
 - A. Straight angle at 180°
 - B. Linear angle at 90°
 - C. Collinear angle at 120°
 - D. Horizontal angle at 180°
- 2. What is defined below?

_____: a portion of a line bounded by two points

- A. arc
- B. axis
- C. ray
- D. segment
- Given XY and XW intersect at point A.
 Which conjecture is always true about the given statement?
 - A. XA = AY
 - B. $\angle XAZ$ is acute.
 - C. \overrightarrow{XY} is perpendicular to \overrightarrow{ZW}
 - D. X, Y, Z, and W are noncollinear.

4. The figure shows lines r, n, and p intersecting to form angles numbered 1, 2, 3, 4, 5, and 6. All three lines lie in the same plane.

Based on the figure, which of the individual statements would provide enough information to conclude that line r is perpendicular to line p? Select **ALL** that apply.

 $m \angle 2 = 90^{\circ}$ $m \angle 6 = 90^{\circ}$ $m \angle 3 = m \angle 6$ $m \angle 1 + m \angle 6 = 90^{\circ}$ $m \angle 3 + m \angle 4 = 90^{\circ}$ $m \angle 4 + m \angle 5 = 90^{\circ}$

not to scale

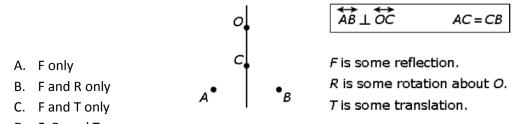
5. Match each term with its definition.

А	A portion of a line consisting of two points and all points between them.
В	A connected straight path. It has no thickness and it continues forever in both directions.
С	A figure formed by two rays with the same endpoint.
D	The set of all points in a plane that are a fixed distance from a point called the center.
Е	A portion of a line that starts at a point and continues forever in one direction.
F	Lines that intersect at right angles.
G	A specific location, it has no dimension and is represented by a dot.
н	Lines that lie in the same plane and do not intersect
	perpendicular lines
	angle
	line segment
	parallel lines
	circle
	point
	line
	ray

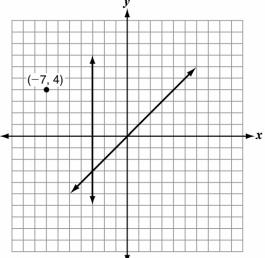
MAFS.912.G-CO.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
represents transformations in the	uses transformations to develop	uses transformations to develop	[intentionally
plane; determines transformations	definitions of angles, perpendicular	definitions of circles and line	left blank]
that preserve distance and angle to	lines, parallel lines; describes	segments; describes rotations and	
those that do not	translations as functions	reflections as functions	

1. A transformation takes point A to point B. Which transformation(s) could it be?



- D. F, R, and T
- 2. The point (-7,4) is reflected over the line x = -3. Then, the resulting point is reflected over the line y = x. Where is the point located after both reflections?

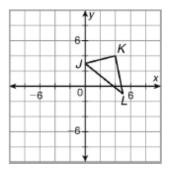


- A. (-10,-7)
- B. (1,4)
- C. (4, -7)
- D. (4,1)
- 3. Given: \overline{AB} with coordinates of A(-3, -1) and B(2, 1) $\overline{A'B'}$ with coordinates of A'(-1, 2) and B'(4, 4)

Which translation was used?

- A. $(x', y') \to (x + 2, y + 3)$
- B. $(x', y') \to (x + 2, y 3)$
- C. $(x', y') \to (x 2, y + 3)$
- D. $(x', y') \to (x 2, y 3)$

- 4. Point P is located at (4, 8) on a coordinate plane. Point P will be reflected over the x-axis. What will be the coordinates of the image of point P?
 - A. (28,4)
 - B. (24,8)
 - C. (4,28)
 - D. (8,4)
- 5. Point *F*' is the image when point *F* is reflected over the line x = -2 and then over the line y = 3. The location of *F*' is (3, 7). Which of the following is the location of point *F*?
 - A. (-7,-1)
 - B. (-7,7)
 - C. (1,5)
 - D. (1,7)
- 6. ΔJKL is rotated 90° about the origin and then translated using $(x, y) \rightarrow (x 8, y + 5)$. What are the coordinates of the final image of point *L* under this composition of transformations?

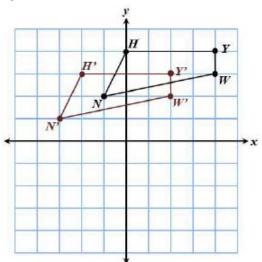


- A. (-7,10)
- B. (-7,0)
- C. (-9,10)
- D. (-9,0)

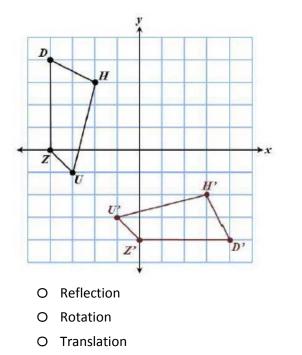
MAFS.912.G-CO.1.4 EOC Practice

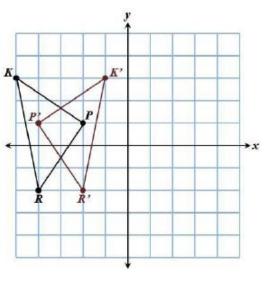
Level 2	Level 3	Level 4	Level 5
represents transformations in the	uses transformations to develop	uses transformations to develop	[intentionally
plane; determines transformations	definitions of angles, perpendicular	definitions of circles and line	left blank]
that preserve distance and angle to	lines, parallel lines; describes	segments; describes rotations and	
those that do not	translations as functions	reflections as functions	

1. The graph of a figure and its image are shown below. Identify the transformation to map the image back onto the figure.

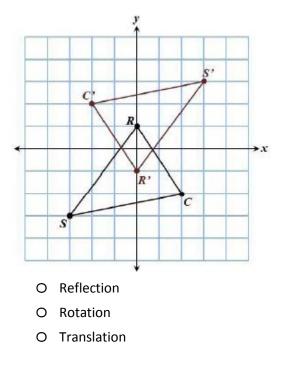


- O Reflection
- O Rotation
- O Translation



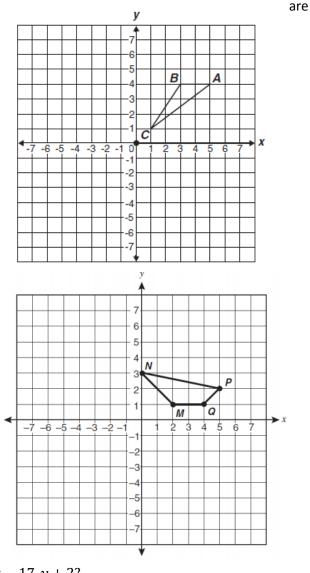


- O Reflection
- O Rotation
- O Translation



2. If triangle ABC is rotated 180 degrees about the origin, what the coordinates of A'?

A'(,)



 Darien drew a quadrilateral on a coordinate grid.
 Darien rotated the quadrilateral 180 and then translated it left 4 units. What are the coordinates of the image of point P?

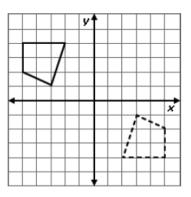
P(,)

- 4. What is the image of M(11, -4) using the translation $(x, y) \rightarrow x 17, y + 2?$
 - A. M'(-6, -2)
 - B. *M*′(6, 2)
 - C. *M*′(−11, 4)
 - D. *M*′(-4,11)
- 5. A person facing east walks east 20 paces, turns, walks north 10 paces, turns, walks west 25 paces, turns, walks south 10 paces, turns, walks east 15 paces, and then stops. What one transformation could have produced the same final result in terms of the position of the person and the direction the person faces?
 - A. reflection over the north-south axis
 - B. rotation
 - C. translation
 - D. reflection over the east-west axis

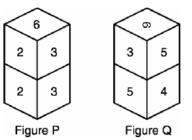
MAFS.912.G-CO.1.5 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a sequence of two	uses transformations	uses algebraic descriptions to	applies transformations that will
transformations that will	that will carry a given	describe rotations and/or	carry a figure onto another figure
carry a given figure onto	figure onto itself or onto	reflections that will carry a figure	or onto itself, given coordinates of
itself or onto another figure	another figure	onto itself or onto another figure	the geometric figure in the stem

- 1. Which transformation maps the solid figure onto the dashed figure?
 - A. rotation 180° about the origin
 - B. translation to the right and down
 - C. reflection across the x-axis
 - D. reflection across the y-axis



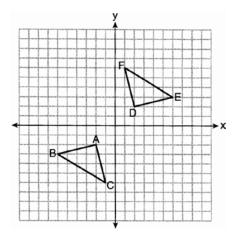
2. Ken stacked 2 number cubes. Each cube was numbered so that opposite faces have a sum of 7.



Which transformation did Ken use to reposition the cubes from figure P to figure Q?

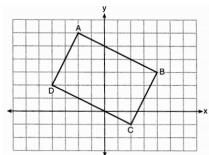
- A. Rotate the top cube 180° , and rotate the bottom cube 180° .
- B. Rotate the top cube 90° clockwise, and rotate the bottom cube 180° .
- C. Rotate the top cube 90° counterclockwise, and rotate the bottom cube180°.
- D. Rotate the top cube 90° counterclockwise, and rotate the bottom cube 90° clockwise.
- 3. A triangle has vertices at A(-7, 6), B(4, 9), C(-2, -3). What are the coordinates of each vertex if the triangle is translated 4 units right and 6 units down?
 - A. A'(-11, 12), B'(0, 15), C'(-6, 3)
 - B. A'(-11,0), B'(0,3), C'(-6,-9)
 - C. A'(-3, 12), B'(8, 15), C'(2, 3)
 - D. A'(-3,0), B'(8,3), C'(2,-9)

- 4. A triangle has vertices at A(-3, -1), B(-6, -5), C(-1, -4). Which transformation would produce an image with vertices A'(3, -1), B'(6, -5), C'(1, -4)?
 - A. a reflection over the x axis
 - B. a reflection over the y axis
 - C. a rotation 90° clockwise
 - D. a rotation 90° counterclockwise
- 5. Triangle ABC and triangle DEF are graphed on the set of axes below.



Which sequence of transformations maps triangle ABC onto triangle DEF?

- A. a reflection over the x –axis followed by a reflection over the y –axis
- B. a 180° rotation about the origin followed by a reflection over the line y = x
- C. a 90° clockwise rotation about the origin followed by a reflection over the y –axis
- D. a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin
- 6. Quadrilateral ABCD is graphed on the set of axes below.



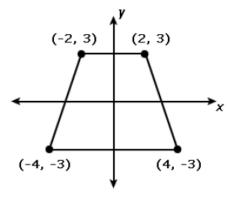
When ABCD is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral A' B 'C 'D'. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

- A. No and C'(1, 2)
- B. No and D'(2, 4)
- C. Yes and A'(6, 2)
- D. Yes and B'(-3,4)

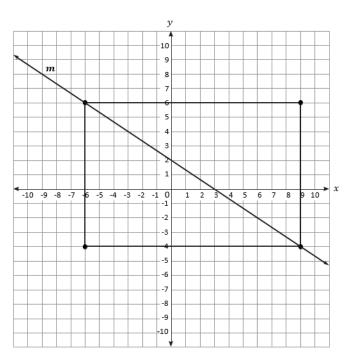
MAFS.912.G-CO.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a sequence of two	uses transformations	uses algebraic descriptions to	applies transformations that will
transformations that will	that will carry a given	describe rotations and/or	carry a figure onto another figure
carry a given figure onto	figure onto itself or onto	reflections that will carry a figure	or onto itself, given coordinates of
itself or onto another figure	another figure	onto itself or onto another figure	the geometric figure in the stem

1. Which transformation will place the trapezoid onto itself?

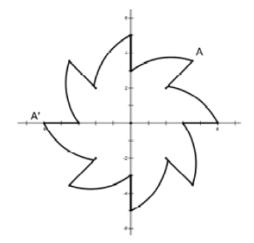


- A. counterclockwise rotation about the origin by 90°
- B. rotation about the origin by 180°
- C. reflection across the x-axis
- D. reflection across the y-axis
- 2. Which transformation will carry the rectangle shown below onto itself?



- A. a reflection over line m
- B. a reflection over the line y = 1
- C. a rotation 90° counterclockwise about the origin
- D. a rotation 270° counterclockwise about the origin

- 3. Which figure has 90° rotational symmetry?
 - A. Square
 - B. regular hexagon
 - C. regular pentagon
 - D. equilateral triang
- 4. Determine the angle of rotation for A to map onto A'.

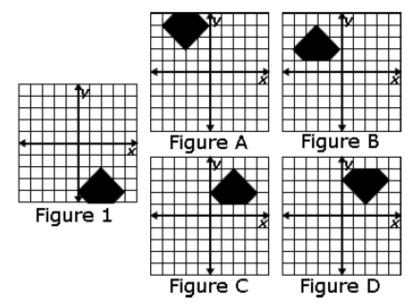


- A. 45°
- B. 90°
- C. 135°
- D. 180°
- 5. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
- A. octagon
- B. decagon
- C. decagon
- D. pentagon

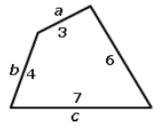
MAFS.912.G-CO.2.6 EOC Practice

Level 2	Level 3	Level 4	Level 5
determines if a sequence of	uses the definition of congruence in	explains that two figures are	[intentionally left
transformations will result	terms of rigid motions to determine if	congruent using the definition of	blank]
in congruent figures	two figures are congruent; uses rigid	congruence based on rigid	
	motions to transform figures	motions	

1. Figure 1 is reflected about the x-axis and then translated four units left. Which figure results?

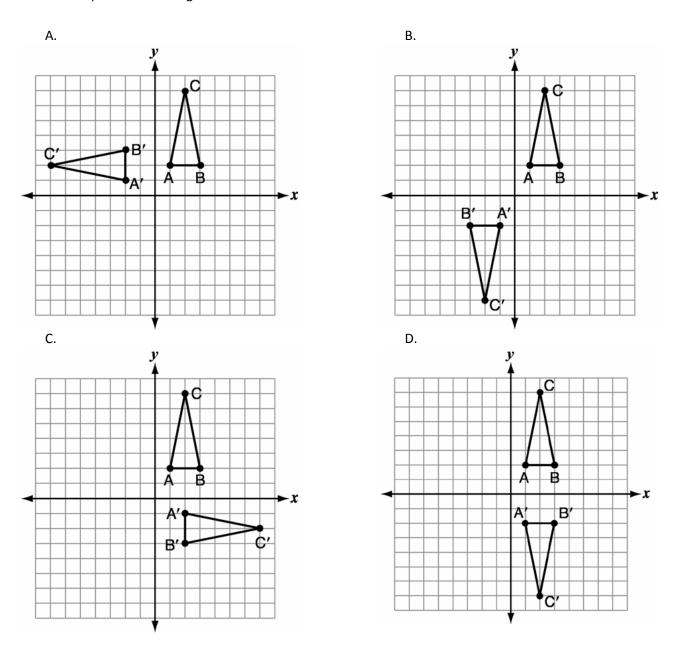


- A. Figure A
- B. Figure B
- C. Figure C
- D. Figure D
- 2. It is known that a series of rotations, translations, and reflections superimposes sides a, b, and c of Quadrilateral X onto three sides of Quadrilateral Y. Which is true about z, the length of the fourth side of Quadrilateral Y?



- A. It must be equal to 6
- B. It can be any number in the range $5 \le z \le 7$
- C. It can be any number in the range $3 \le z \le 8$
- D. It can be any number in the range 0 < z < 14

- 3. Which transformation will always produce a congruent figure?
 - E. $(x', y') \to (x + 4, y 3)$
 - F. $(x', y') \to (2x, y)$ G. $(x', y') \to (x + 2, 2y)$
 - $\begin{array}{l} \text{G.} \quad (x,y') \rightarrow (x+2,2) \\ \text{H.} \quad (x',y') \rightarrow (2x,2y) \end{array}$
- 4. Triangle ABC is rotated 90 degrees clockwise about the origin onto triangle A'B'C'. Which illustration represents the correct position of triangle A'B'C'?



- 5. The vertices of ΔJKL have coordinates J(5, 1), K(-2, -3), and L(-4, 1). Under which transformation is the image $\Delta J'K'L'$ NOT congruent to ΔJKL ?
 - A. a translation of two units to the right and two units down
 - B. a counterclockwise rotation of 180 degrees around the origin
 - C. a reflection over the x –axis
 - D. a dilation with a scale factor of 2 and centered at the origin
- 6. Prove that the triangles with the given vertices are congruent. A(3, 1), B(4, 5), C(2, 3)

D(-1, -3), E(-5, -4), F(-3, -2)

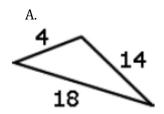
- A. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a rotation: $(x, y) \rightarrow (y, -x)$, followed by a reflection: $(x, y) \rightarrow (x, -y)$.
- B. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a reflection: $(x, y) \rightarrow (-x, y)$, followed by a rotation: $(x, y) \rightarrow (y, -x)$.
- C. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a translation: $(x, y) \rightarrow (x 4, y)$, followed by another translation: $(x, y) \rightarrow (x, y 6)$.
- D. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a rotation: $(x, y) \rightarrow (-y, x)$, followed by a reflection: $(x, y) \rightarrow (x, -y)$.

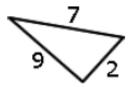
MAFS.912.G-CO.2.7 EOC Practice

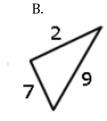
Level 2	Level 3	Level 4	Level 5
identifies	shows that two triangles are congruent if and	shows and explains, using the	justifies steps of a proof
corresponding	only if corresponding pairs of sides and	definition of congruence in terms	given algebraic descriptions
parts of two	corresponding pairs of angles are congruent	of rigid motions, the congruence	of triangles, using the
congruent	using the definition of congruence in terms of	of two triangles; uses algebraic	definition of congruence in
triangles	rigid motions; applies congruence to solve	descriptions to describe rigid	terms of rigid motions that
	problems; uses rigid motions to show ASA,	motion that will show ASA, SAS,	the triangles are congruent
	SAS, SSS, or HL is true for two triangles	SSS, or HL is true for two triangles	using ASA, SAS, SSS, or HL

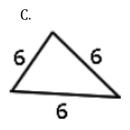
1. The triangle below can be subject to reflections, rotations, or translations. With which of the triangles can it coincide after a series of these transformations?

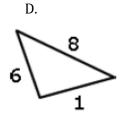
Figures are not necessarily drawn to scale.



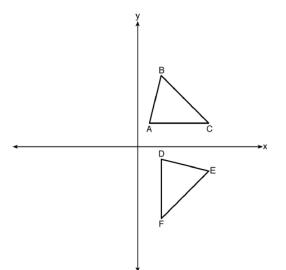








2. The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.



Which statement is true?

- A. $\overline{BC} \cong \overline{DE}$
- B. $\overline{AB} \cong \overline{DF}$
- C. $\angle C \cong \angle E$
- D. $\angle A \cong \angle D$
- 3. If $\triangle ABC \cong \triangle DEF$, which segment is congruent to \overline{AC} ?
 - A. \overline{DE}
 - B. \overline{EF}
 - C. \overline{DF}
 - D. \overline{AB}
- 4. If $\Delta TRI \cong \Delta ANG$, which of the following congruence statements are true?
 - $\Box \quad \overline{TR} \cong \overline{AN}$ $\Box \quad \overline{TI} \cong \overline{AG}$
 - $\square \quad \overline{RI} \cong \overline{NG}$
 - $\Box \quad \overline{TI} \cong \overline{NA}$
 - $\Box \quad \angle T \cong \angle A$
 - $\Box \quad \angle R \cong \angle N$
 - $\Box \ \angle I \cong \angle G$
 - $\Box \ \angle A \cong \angle N$

MAFS.912.G-CO.2.8 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies	shows that two triangles are congruent if and	shows and explains, using the	justifies steps of a proof
corresponding	only if corresponding pairs of sides and	definition of congruence in terms	given algebraic descriptions
parts of two	corresponding pairs of angles are congruent	of rigid motions, the congruence	of triangles, using the
congruent	using the definition of congruence in terms of	of two triangles; uses algebraic	definition of congruence in
triangles	rigid motions; applies congruence to solve	descriptions to describe rigid	terms of rigid motions that
	problems; uses rigid motions to show ASA,	motion that will show ASA, SAS,	the triangles are congruent
	SAS, SSS, or HL is true for two triangles	SSS, or HL is true for two triangles	using ASA, SAS, SSS, or HL

1. Given the information regarding triangles ABC and DEF, which statement is true?

$$\angle A \cong \angle D$$
$$\angle B \cong \angle E$$
$$\overline{BC} \cong \overline{EF}$$

- A. The given information matches the SAS criterion; the triangles are congruent.
- B. The given information matches the ASA criterion; the triangles are congruent.
- C. Angles C and F are also congruent; this must be shown before using the ASA criterion.
- D. It cannot be shown that the triangles are necessarily congruent.
- 2. Zhan cut a drinking straw into three pieces (shown below) to investigate a triangle postulate. He moves the straw pieces to make triangles that have been translated, rotated, and reflected from an original position. The end of one piece is always touching the end of another piece. Which postulate could Zhan be investigating using only these straw pieces and no other tools?

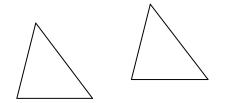
2 inches	
3 inches	
4 inches	
(Note: Not to sca	le.)

- A. The sum of the measures of the interior angles of all triangles is 180°.
- B. If three sides of one triangle are congruent to three sides of a second triangle then, the triangles are congruent.
- C. The sum of the squares of the lengths of the two shorter sides of a triangle is equal to the square of the length of the longest side of a triangle.
- D. If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

3. Consider $\triangle ABC$ that has been transformed through rigid motions and its image is compared to $\triangle XYZ$. Determine if the given information is sufficient to draw the provided conclusion. Explain your answers.

Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\angle B \cong \angle Y$	$\Delta ABC \cong \Delta XYZ$		
$\angle C \cong \angle Z$			
Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\angle B \cong \angle Y$	$\Delta ABC \cong \Delta XYZ$		
$\overline{BC} \cong \overline{YZ}$			
		_	
Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\overline{AB} \cong \overline{XY}$	$\Delta ABC \cong \Delta XYZ$		
$\overline{BC} \cong \overline{YZ}$			

- 4. For two isosceles right triangles, what is not enough information to prove congruence?
 - A. The lengths of all sides of each triangle.
 - B. The lengths of the hypotenuses for each triangle.
 - C. The lengths of a pair of corresponding legs.
 - D. The measures of the non-right angles in each triangle.
- 5. For two triangles with identical orientation, what rigid motion is necessary for SAS congruence to be shown?

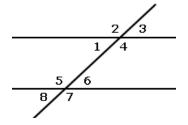


- A. Translation
- B. Rotation
- C. Reflection
- D. Dilation

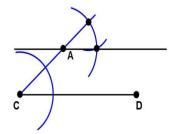
MAFS.912.G-CO.3.9 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses theorems about	completes no more than two steps	completes a proof for	creates a proof, given
parallel lines with one	of a proof using theorems about	vertical angles are	statements and reasons, for
transversal to solve	lines and angles; solves problems	congruent, alternate interior	points on a perpendicular
problems; uses the vertical	using parallel lines with two to	angles are congruent, and	bisector of a line segment are
angles theorem to solve	three transversals; solves problems	corresponding angles are	exactly those equidistant
problems	about angles using algebra	congruent	from the segment's endpoints

1. Which statements should be used to prove that the measures of angles 1 and 5 sum to 180°?



- A. Angles 1 and 8 are congruent as corresponding angles; angles 5 and 8 form a linear pair.
- B. Angles 1 and 2 form a linear pair; angles 3 and 4 form a linear pair.
- C. Angles 5 and 7 are congruent as vertical angles; angles 6 and 8 are congruent as vertical angles.
- D. Angles 1 and 3 are congruent as vertical angles; angles 7 and 8 form a linear pair.
- 2. Which statement justifies why the constructed line passing through the given point A is parallel to \overline{CD} ?

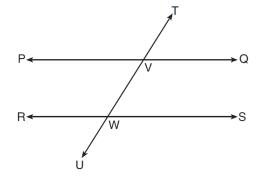


- A. When two lines are each perpendicular to a third line, the lines are parallel.
- B. When two lines are each parallel to a third line, the lines are parallel.
- C. When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
- D. When two lines are intersected by a transversal and corresponding angles are congruent, the lines are parallel.
- 3. In the diagram below, transversal \overrightarrow{TU} intersects \overrightarrow{PQ} and \overrightarrow{RS} at V and W, respectively.

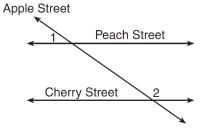
If $m \angle TVQ = 5x - 22$ and $m \angle TVQ = 3x + 10$, for which value of x is $\overrightarrow{PQ} \parallel \overrightarrow{RS}$?

- A. 6
- B. 16
- C. 24
- D. 28

Congruency, Similarity, Right Triangles, and Trigonometry - Student



4. Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below.



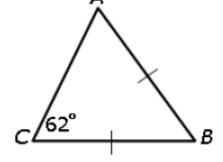
If $m \angle 1 = 2x + 36$ and $m \angle 2 = 7x - 9$, what is $m \angle 1$?

- A. 9
- B. 17
- C. 54
- D. 70

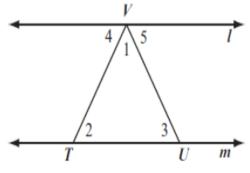
MAFS.912.G-CO.3.10 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses theorems	completes no more than two steps in a proof	completes a proof for theorems	completes proofs using
about interior	using theorems (measures of interior angles of	about triangles; solves problems	the medians of a triangle
angles of a	a triangle sum to 180,; base angles of isosceles	by applying algebra using the	meet at a point; solves
triangle,	triangles are congruent, the segment joining	triangle inequality and the Hinge	problems by applying
exterior angle	midpoints of two sides of a triangle is parallel	theorem; solves problems for	algebra for the
of a triangle	to the third side and half the length) about	the midsegment of a triangle,	midsegment of a triangle,
	triangles; solves problems about triangles	concurrency of angle bisectors,	concurrency of angle
	using algebra; solves problems using the	and concurrency of	bisectors, and concurrency
	triangle inequality and the Hinge theorem	perpendicular bisectors	of perpendicular bisectors

- 1. What is the measure of $\angle B$ in the figure below?
 - A. 62°
 - B. 58°
 - C. 59°
 - D. 56°



2. In this figure, l | | m. Jessie listed the first two steps in a proof that $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$.



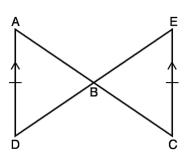
	Step	Justification
1	$\angle 2 \cong \angle 4$?
2	$\angle 3 \cong \angle 5$?

Which justification can Jessie give for Steps 1 and 2?

- A. Alternate interior angles are congruent.
- B. Corresponding angles are congruent.
- C. Vertical angles are congruent.
- D. Alternate exterior angles are congruent.

3. Given: $\overline{AD} \parallel \overline{EC}, \overline{AD} \cong \overline{EC}$

Prove: $\overline{AB} \cong \overline{CB}$

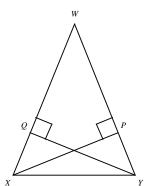


Shown below are the statements and reasons for the proof. They are not in the correct order.

Statement	Reason		
I. △ABD ≅ △CBE	I. AAS		
II. ∠ABD ≅∠EBC	II. Vertical angles are congruent.		
III. $\overline{AD} \parallel \overline{EC}, \overline{AD} \cong \overline{EC}$	III. Given		
IV. $\overline{AB} \cong \overline{CB}$	IV. Corresponding parts of congruent triangles are congruent.		
V. ∠DAB ≅ ∠ECB	V. If two parallel lines are cut by a transversal, the alternate interior angles are congruent.		

Which of these is the most logical order for the statements and reasons?

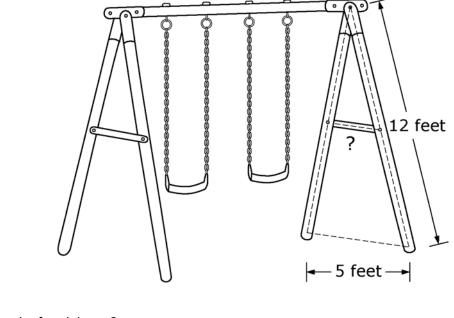
- A. I, II, III, IV, V
- B. III, II, V, I, IV
- C. III, II, V, IV, I
- D. II, V, III, IV, I
- 4. \overline{YQ} and \overline{XP} are altitudes to the congruent sides of isosceles triangle WXY.

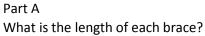


Keisha is going to prove $\overline{YQ} \cong \overline{XP}$ by showing they are congruent parts of the congruent triangles QXY and PYX.

- A. AAS because triangle WXY is isosceles, its base angles are congruent. Perpendicular lines form right angles, which are congruent; and segment \overline{XY} is shared.
- B. SSS because segment \overline{QP} would be parallel to segment \overline{XY} .
- C. SSA because segment \overline{XY} is shared; segments \overline{XP} and \overline{YQ} are altitudes, and WXY is isosceles, so base angles are congruent.
- D. ASA because triangle WXY is isosceles, its base angles are congruent. Segment \overline{XY} is shared; and perpendicular lines form right angles, which are congruent.

5. The figure above represents a swing set. The supports on each side of the swing set are constructed from two 12-foot poles connected by a brace at their midpoint. The distance between the bases of the two poles is 5 feet.





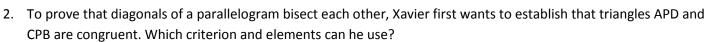
Part B

Which theorem about triangles did you apply to find the solution in Part A?

MAFS.912.G-CO.3.11 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses properties of	completes no more than two steps in a	creates proofs to show	proves that rectangles
parallelograms to find numerical	proof for opposite sides of a parallelogram	the diagonals of a	and rhombuses are
values of a missing side or angle	are congruent and opposite angles of a	parallelogram bisect	parallelograms, given
or select a true statement about	parallelogram are congruent; uses	each other, given	statements and
a parallelogram	theorems about parallelograms to solve	statements and reasons	reasons
	problems using algebra		

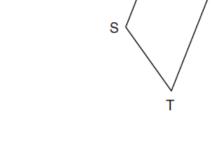
- 1. Two pairs of parallel line form a parallelogram. Becki proved that angles 2 and 6 are congruent. She is first used corresponding angles created by a transversal and then alternate interior angles. Which pairs of angles could she use?
 - A. 1 and 2 then 5 and 6
 - B. 4 and 2 then 4 and 6
 - C. 7 and 2 then 7 and 6
 - D. 8 and 2 then 8 and 6

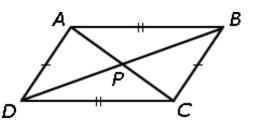


- A. SAS: sides AP & PD and CP & PB with the angles in between
- B. SAS: sides AD & AP and CB & CP with the angles in between
- C. ASA: sides DP and PB with adjacent angles
- D. ASA: sides AD and BC with adjacent angles

3. In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x - 1, and TU = 4x - 3.

- A. 2
- B. 4
- C. 5
- D. 7

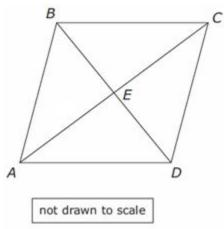




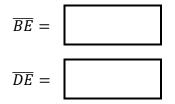
U

8

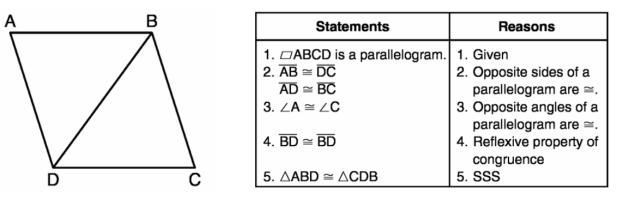
4. The figure shows parallelogram ABCD with AE = 18.



Let $BE = x^2 - 48$ and let = 2x. What are the lengths of \overline{BE} and \overline{DE} ?



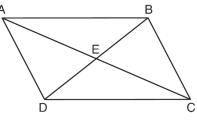
- 5. Ms. Davis gave her students all the steps of the proof below. One step is not needed. Given: *ABCD is a parallelogram*
 - Prove: $\triangle ABD \cong \triangle CDB$



Which step is not necessary to complete this proof?

- A. Step 1
- B. Step 2
- C. Step 3
- D. Step 4

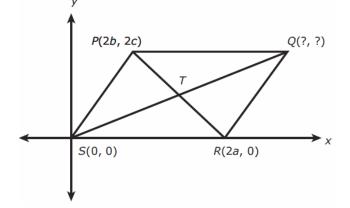
6. Given: Quadrilateral ABCD is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E



Prove: $\triangle AED \cong \triangle CEB$

Describe a single rigid motion that maps ΔAED onto ΔCEB .

7. The figure shows parallelogram PQRS on a coordinate plane. Diagonals \overline{SQ} and \overline{PR} intersect at point T.

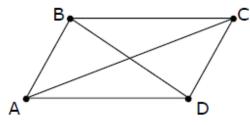


Part A Find the coordinates of point Q in terms of a, b, and c.

Part B

Since PQRS is a parallelogram, \overline{SQ} and \overline{PR} bisect each other. Use the coordinates to verify that \overline{SQ} and \overline{PR} bisect each other.

8. Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.



Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.

Given: Quadrilateral ABCD is a parallelogram. Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$

Missy's incomplete proof is shown.

	Statement		Reason	
1.	Quadrilateral ABCD is a parallelogram.	1.	given	
2.	AB CD; BC DA	2.	definition of parallelogram	
3.	?	3.	?	
4.	AC ≅ AC	4.	reflexive property	
5.	∆ABC ≅ ∆CDA	5.	angle-side-angle congruence postulate	
6.	AB ≅ CD and BC ≅ DA	6.	Corresponding parts of congruent triangles are congruent (CPCTC).	

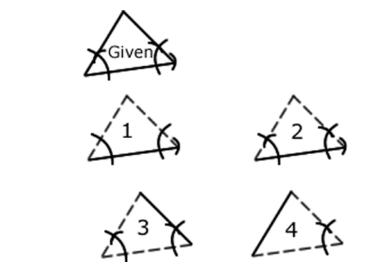
Which statement and reason should Missy insert into the chart as step 3 to complete the proof?

- A. $\overline{BD} \cong \overline{BD}$; reflexive property
- B. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$; reflexive property
- C. $\angle ABD \cong \angle CDB$ and $\angle ADB \cong \angle CBD$; When parallel lines are cut by a transversal, alternate interior angles are congruent.
- D. $\angle BAC \cong \angle DCA$ and $\angle BCA \cong \angle DAC$; When parallel lines are cut by a transversal, alternate interior angles are congruent.

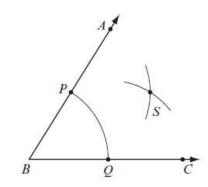
MAFS.912.G-CO.4.12 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual	identifies, sequences, or reorders steps in a	identifies sequences or	explains steps in a
or written step in	construction: copying a segment, copying an angle,	reorders steps in a	construction
a construction	bisecting a segment, bisecting an angle, constructing	construction of an equilateral	
	perpendicular lines, including the perpendicular	triangle, a square, and a	
	bisector of a line segment, and constructing a line	regular hexagon inscribed in a	
	parallel to a given line through a point not on the line	circle	

1. Which triangle was constructed congruent to the given triangle?



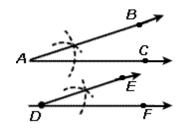
- A. Triangle 1
- B. Triangle 2
- C. Triangle 3
- D. Triangle 4
- 2. A student used a compass and a straightedge to bisect ∠ABC in this figure.



Which statement BEST describes point S?

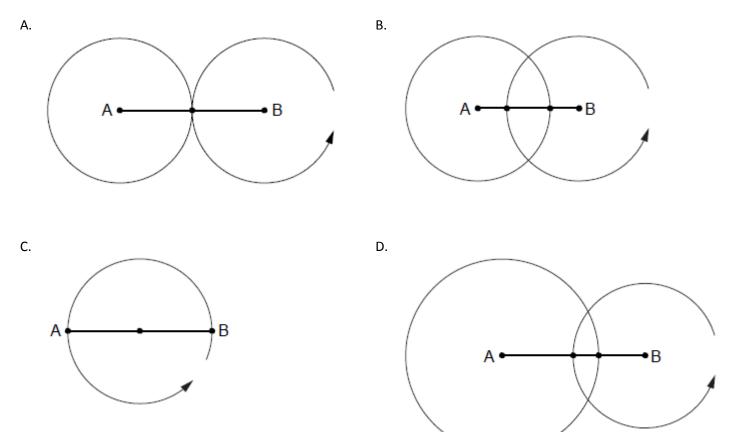
- A. Point S is located such that SC = PQ.
- B. Point S is located such that SA = PQ.
- C. Point S is located such that PS = BQ.
- D. Point S is located such that QS = PS.

3. What is the first step in constructing congruent angles?



- A. Draw ray DF.
- B. From point A, draw an arc that intersects the sides of the angle at point B and C.
- C. From point D, draw an arc that intersects the sides of the angle at point E and F.
- D. From points A and D, draw equal arcs that intersects the rays AC and DF.
- 4. Melanie wants to construct the perpendicular bisector of line segment AB using a compass and straightedge.

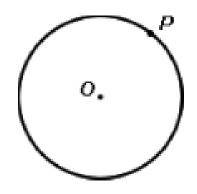
Which diagram shows the first step(s) of the construction?



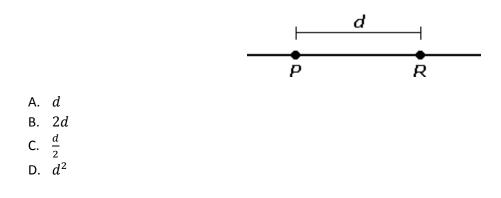
MAFS.912.G-CO.4.13 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual	identifies, sequences, or reorders steps in a	identifies sequences or	explains steps in a
or written step in	construction: copying a segment, copying an angle,	reorders steps in a	construction
a construction	bisecting a segment, bisecting an angle, constructing	construction of an equilateral	
	perpendicular lines, including the perpendicular	triangle, a square, and a	
	bisector of a line segment, and constructing a line	regular hexagon inscribed in a	
	parallel to a given line through a point not on the line	circle	

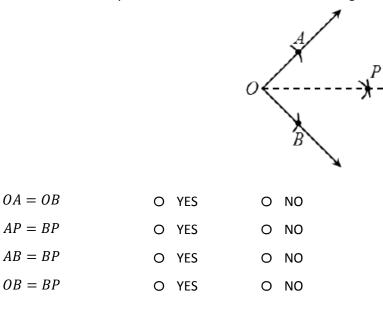
1. The radius of circle O is r. A circle with the same radius drawn around P intersects circle O at point R. What is the measure of angle ROP?



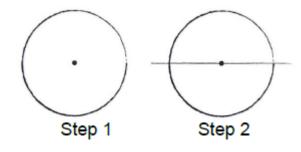
- A. 30°
- B. 60°
- C. 90°
- D. 120°
- 2. Carol is constructing an equilateral triangle with P and R being two of the vertices. She is going to use a compass to draw circles around P and R. What should the radius of the circles be?

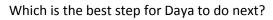


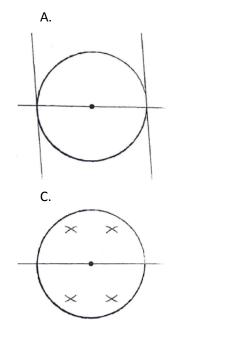
3. The figure below shows the construction of the angle bisector of $\angle AOB$ using a compass. Which of the following statements must always be true in the construction of the angle bisector? Select **Yes** or **No** for each statement.

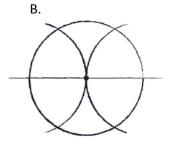


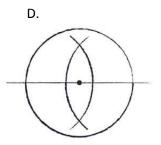
4. Daya is drawing a square inscribed in a circle using a compass and a straightedge. Her first two steps are shown.











Congruency, Similarity, Right Triangles, and Trigonometry - Student

- 5. Carolina wanted to construct a polygon inscribed in a circle by paper folding. She completed the following steps:
 - Start with a paper circle. Fold it in half. Make a crease.
 - Take the half circle and fold it in thirds. Crease along the sides of the thirds.
 - Open the paper. Mark the intersection points of the creases with the circle.
 - Connect adjacent intersection points on the circle with segments.

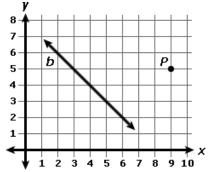
Which polygon was Carolina most likely trying to construct?

- A. Regular nonagon
- B. Regular octagon
- C. Regular hexagon
- D. Regular pentagon

MAFS.912.G-SRT.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies the	chooses the properties of dilations when a dilation is	explains why a dilation takes a	explains whether a
scale factors of	presented on a coordinate plane, as a set of ordered	line not passing through the	dilation presented on
dilations	pairs, as a diagram, or as a narrative; properties are:	center of dilation to a parallel	a coordinate plane, as
	a dilation takes a line not passing through the center	line and leaves a line passing	a set of ordered pairs,
	of the dilation to a parallel line and leaves a line	through the center unchanged	as a diagram, or as a
	passing through the center unchanged; the dilation	or that the dilation of a line	narrative correctly
	of a line segment is longer or shorter in the ratio	segment is longer or shorter in	verifies the properties
	given by the scale factor	ratio given by the scale factor	of dilations

1. Line b is defined by the equation y = 8 - x. If line b undergoes a dilation with a scale factor of 0.5 and center P, which equation will define the image of the line?

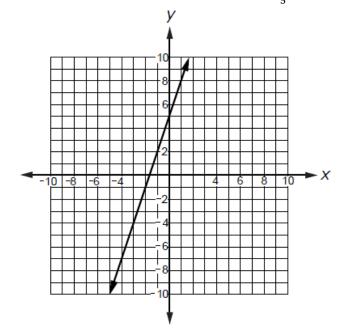


- A. y = 4 x
- B. y = 5 x
- C. y = 8 x
- D. y = 11 x
- 2. GH = 1. A dilation with center H and a scale factor of 0.5 is applied. What will be the length of the image of the segment GH?



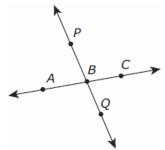
- A. 0
- B. 0.5
- C. 1
- D. 2
- 3. The vertices of square ABCD are A(3, 1), B(3, -1), C(5, -1), and D(5, 1). This square is dilated so that A' is at (3, 1) and C' is at (8, -4). What are the coordinates of D'?
 - A. (6, -4)
 - B. (6,−4)
 - C. (8,1)
 - D. (8,4)

4. Rosa graphs the line y = 3x + 5. Then she dilates the line by a factor of $\frac{1}{5}$ with (0, 7) as the center of dilation.



Which statement best describes the result of the dilation?

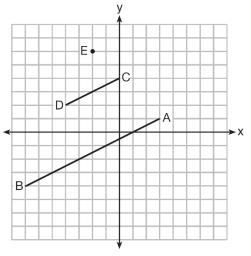
- A. The result is a different line $\frac{1}{5}$ the size of the original line.
- B. The result is a different line with a slope of 3.
- C. The result is a different line with a slope of $-\frac{1}{3}$.
- D. The result is the same line.
- 5. The figure shows line AC and line PQ intersecting at point B. Lines A'C' and P'Q' will be the images of lines AC and PQ, respectively, under a dilation with center P and scale factor 2.



Which statement about the image of lines AC and PQ would be true under the dilation?

- A. Line A'C' will be parallel to line AC, and line P'Q' will be parallel to line PQ.
- B. Line A'C' will be parallel to line AC, and line P'Q' will be the same line as line PQ.
- C. Line A'C' will be perpendicular to line AC, and line P'Q' will be parallel to line PQ.
- D. Line A'C' will be perpendicular to line AC, and line P'Q' will be the same line as line PQ.

- 6. A line that passes through the points whose coordinates are (1,1) and (5,7) is dilated by a scale factor of 3 and centered at the origin. The image of the line
- A. is perpendicular to the original line
- B. is parallel to the original line
- C. passes through the origin
- D. is the original line
- 7. In the diagram below, \overline{CD} is the image of \overline{AB} after a dilation of scale factor k with center E.



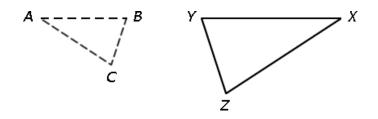
Which ratio is equal to the scale factor k of the dilation?

- A. $\frac{EC}{EA}$ BA Β.
- EA
- $\frac{EA}{BA}$ C.
- $\frac{EA}{EC}$ D.

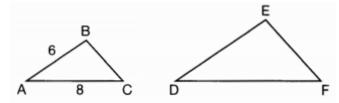
MAFS.912.G-SRT.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
determines if	uses the definition of similarity in terms	shows that corresponding	explains using the definition of similarity
two given	of similarity transformations to decide if	angles of two similar	in terms of similarity transformations
figures are	two figures are similar; determines if	figures are congruent and	that corresponding angles of two figures
similar	given information is sufficient to	that their corresponding	are congruent and that corresponding
	determine similarity	sides are proportional	sides of two figures are proportional

- 1. When two triangles are considered similar but not congruent?
 - A. The distance between corresponding vertices are equal.
 - B. The distance between corresponding vertices are proportionate.
 - C. The vertices are reflected across the x-axis.
 - D. Each of the vertices are shifted up by the same amount.
- 2. Triangle ABC was reflected and dilated so that it coincides with triangle XYZ. How did this transformation affect the sides and angles of triangle ABC?



- A. The side lengths and angle measure were multiplied by $\frac{XY}{AB}$
- B. The side lengths were multiplied by $\frac{XY}{AB}$, while the angle measures were preserved
- C. The angle measures were multiplied by $\frac{XY}{AB}$, while the side lengths were preserved
- D. The angle measures and side lengths were preserved
- 3. In the diagram below, $\Delta ABC \sim \Delta DEF$.



If AB = 6 and AC = 8, which statement will justify similarity by SAS?

- A. $DE = 9, DF = 12, \text{ and } \angle A \cong \angle D$
- B. $DE = 8, DF = 10, \text{ and } \angle A \cong \angle D$
- C. $DE = 36, DF = 64, \text{ and } \angle C \cong \angle LF$
- D. $DE = 15, DF = 20, \text{ and } \angle C \cong \angle LF$

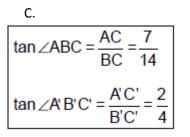
4. Kelly dilates triangle *ABC* using point P as the center of dilation and creates triangle A'B'C'. By comparing the slopes of *AC* and *CB* and *A'C'* and *C'B'*, Kelly found that $\angle ACB$ and $\angle A'C'B'$ are right angles.

Which set of calculations could Kelly use to prove $\triangle ABC$ is similar to $\triangle A'B'C'$?

A.
slope AB =
$$\frac{7 - (-7)}{2 - (-5)} = \frac{14}{7} = 2$$

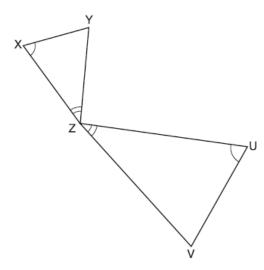
slope A'B' = $\frac{7 - 3}{-3 - (-5)} = \frac{4}{2} = 2$

В.
$AB^2 = 7^2 + 14^2$
$A'B'^2 = 2^2 + 4^2$



D.	
∠ABC+∠BCA	+ ∠ CAB = 180°
∠A'B'C'+∠B'C	'A' +∠C'A'B' =180°

5. In the diagram below, triangles XYZ and UVZ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.

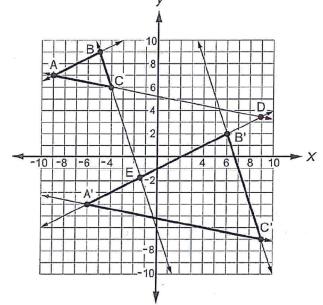


Describe a sequence of similarity transformations that shows ΔXYZ is similar to ΔUVZ .

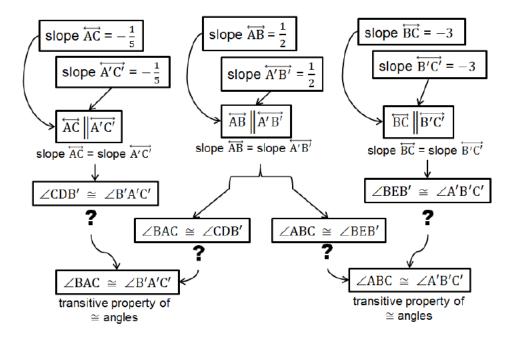
MAFS.912.G-SRT.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies that two	establishes the AA	proves that two triangles are similar if two angles	proves the Pythagorean
triangles are similar	criterion for two triangles	of one triangle are congruent to two angles of	theorem using similarity
using the AA criterion	to be similar by using the	the other triangle, using the properties of	
	properties of similarity	similarity transformations; uses triangle	
	transformations	similarity to prove theorems about triangles	

1. Kamal dilates triangle ABC to get triangle A'B'C'. He knows that the triangles are similar because of the definition of similarity transformations. He wants to demonstrate the angle-angle similarity postulate by proving $\angle BAC \cong \angle B'A'C'$ and $\angle ABC \cong \angle A'B'C'$.



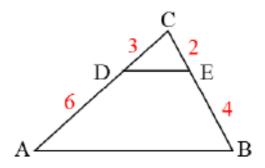
Kamal makes this incomplete flow chart proof.



Congruency, Similarity, Right Triangles, and Trigonometry - Student

What reason should Kamal add at all of the question marks in order to complete the proof?

- A. Two non-vertical lines have the same slope if and only if they are parallel.
- B. Angles supplementary to the same angle or to congruent angles are congruent.
- C. If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
- D. If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.
- 2. Given: AD = 6; DC = 3; BE = 4; and EC = 2Prove: $\Delta CDE \sim \Delta CAB$

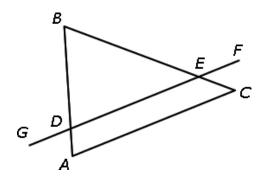


	Statements	Reasons
1.		Given
2.	CA = CD + DA	
	CB = CE + EB	
3.	$\frac{CA}{CD} = \frac{9}{3} = 3$; $\frac{CB}{CE} = \frac{6}{2} = 3$	
4.		Transitive Property
5.		
6.	$\Delta CDE \sim \Delta CAB$	

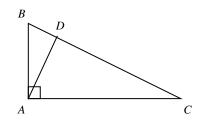
MAFS.912.G-SRT.2.4 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies that two	establishes the AA	proves that two triangles are similar if two angles	proves the Pythagorean
triangles are similar	criterion for two triangles	of one triangle are congruent to two angles of	theorem using similarity
using the AA criterion	to be similar by using the	the other triangle, using the properties of	
	properties of similarity	similarity transformations; uses triangle	
	transformations	similarity to prove theorems about triangles	

1. Lines AC and FG are parallel. Which statement should be used to prove that triangles ABC and DBE are similar?



- A. Angles BDE and BCA are congruent as alternate interior angles.
- B. Angles BAC and BEF are congruent as corresponding angles.
- C. Angles BED and BCA are congruent as corresponding angles.
- D. Angles BDG and BEF are congruent as alternate exterior angles.
- 2. A diagram from a proof of the Pythagorean Theorem is shown. Which statement would NOT be used in the proof?



A.
$$(AB)^{2} + (AC)^{2} = (BC)[(BD) + (DC)] \Longrightarrow (AB)^{2} + (AC)^{2} = (BC)$$

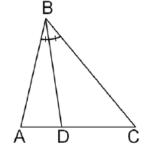
- B. $\triangle BAC \sim \triangle BDA \sim \triangle ADC$
- C. $\frac{AB}{BC} = \frac{BD}{AB}$ and $\frac{AC}{BC} = \frac{DC}{AC}$
- D. $\triangle ABC$ is a right triangle with an altitude \overline{AD} .

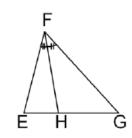
3. Ethan is proving the theorem that states that if two triangles are similar, then the measures of the corresponding angle bisectors are proportional to the measures of the corresponding sides.

Given: $\Delta ABC \sim \Delta EFG$.

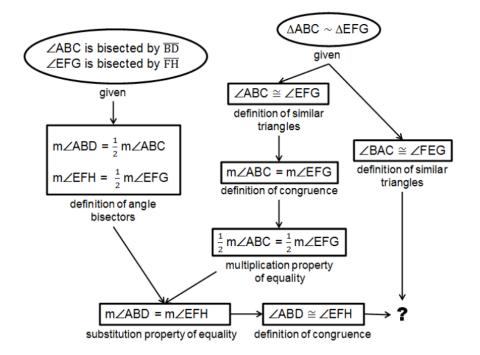
 \overline{BD} bisects $\angle ABC$, and \overline{FH} bisects $\angle EFG$.

Prove:
$$\frac{AB}{EF} = \frac{BD}{FH}$$





Ethan's incomplete flow chart proof is shown.

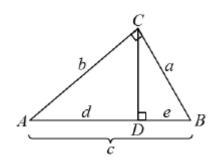


Which statement and reason should Ethan add at the question mark to best continue the proof?

- A. $\triangle ABD \sim \triangle EFH$; AA similarity
- B. $\angle BCA \cong \angle FGE$; definition of similar triangles
- C. $\frac{AB}{BC} = \frac{EF}{GH}$; definition of similar triangles
- D. $m \angle ADB + m \angle ABD + m \angle BAD = 180^{\circ}$; $m \angle EFH + m \angle EHF + m \angle FEH = 180^{\circ}$; Angle Sum Theorem

4. In the diagram, $\triangle ABC$ is a right triangle with right angle , and \overline{CD} is an altitude of $\triangle ABC$.

Use the fact that $\triangle ABC \sim \triangle ACD \sim \triangle CBD$ to prove $a^2 + b^2 = c^2$

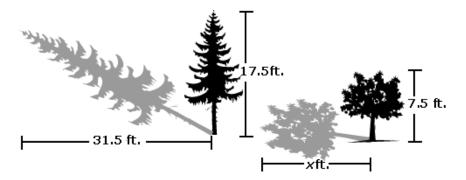


Statements	Reasons

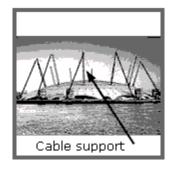
MAFS.912.G-SRT.2.5 EOC Practice

Level 2	Level 3	Level 4	Level 5
finds measures of sides	solves problems involving triangles,	completes proofs about	proves conjectures about
and angles of	using congruence and similarity	relationships in geometric	congruence or similarity in
congruent and similar	criteria; provides justifications about	figures by using congruence	geometric figures, using
triangles when given a	relationships using congruence and	and similarity criteria for	congruence and similarity
diagram	similarity criteria	triangles	criteria

1. Given the diagram below, what is the value of x?



- A. 13.5
- B. 14.6
- C. 15.5
- D. 16.6
- 2. A scale model of the Millennium Dome in Greenwich, England, was constructed on a scale of 100 meters to 1 foot. The cable supports are 50 meters high and form a triangle with the cables. How high are the cable supports on the scale model that was built?

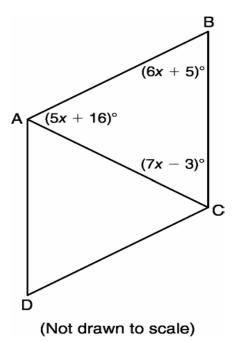


- A. 0.5 foot
- B. 1 foot
- C. 1.5 feet
- D. 2 feet

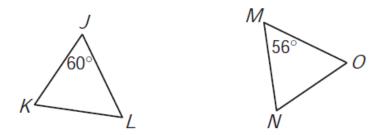
- 3. Hector knows two angles in triangle A are congruent to two angles in triangle B. What else does Hector need to know to prove that triangles A and B are similar?
 - A. Hector does not need to know anything else about triangles A and B.
 - B. Hector needs to know the length of any corresponding side in both triangles.
 - C. Hector needs to know all three angles in triangle A are congruent to the corresponding angles in triangle B.
 - D. Hector needs to know the length of the side between the corresponding angles on each triangle.
 - 4. Figure ABCD, to the right, is a parallelogram.

What is the measure of $\angle ACD$?

- A. 59°
- B. 60°
- C. 61°
- D. 71°

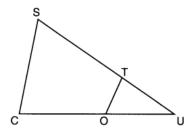


5. In the diagram below, $\Delta JKL \cong \Delta ONM$.



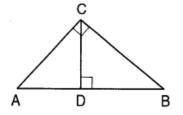
Based on the angle measures in the diagram, what is the measure, in degrees, of $\angle N$? Enter your answer in the box.

6. In $\triangle SCU$ shown below, points T and 0 are on \overline{SU} and \overline{CU} , respectively. Segment \overline{OT} is drawn so that $\angle C \cong \angle OTU$.



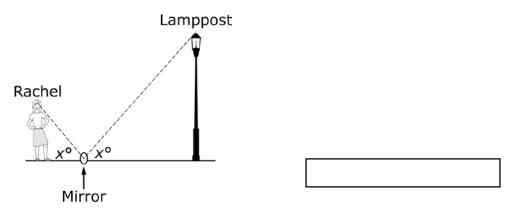
If TU = 4, OU = 5, and OC = 7, what is the length of \overline{ST} ?

- A. 5.6
- B. 8.75
- C. 11
- D. 15
- 7. In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse \overline{AB} of right triangle ABC.



Which lengths would not produce an altitude that measures $6\sqrt{2}$?

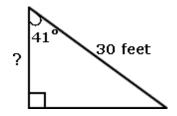
- A. AD = 2 and DB = 36B. AD = 3 and AB = 24
- C. AD = 6 and DB = 12
- D. AD = 8 and AB = 17
- 8. To find the height of a lamppost at a park, Rachel placed a mirror on the ground 20 feet from the base of the lamppost. She then stepped back 4 feet so that she could see the top of the lamp post in the center of the mirror. Rachel's eyes are 5 feet 6 inches above the ground. What is the height, in feet, of the lamppost?



MAFS.912.G-SRT.3.8 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

1. A 30-foot long escalator forms a 41° angle at the second floor. Which is the closest height of the first floor?



- A. 20 feet
- B. 22.5 feet
- C. 24.5 feet
- D. 26 feet
- Jane and Mark each build ramps to jump their remote-controlled cars. Both ramps are right triangles when viewed from the side. The incline of Jane's ramp makes a 30-degree angle with the ground, and the length of the inclined ramp is 14 inches. The incline of Mark's ramp makes a 45-degree angle with the ground, and the length of the inclined ramp is 10 inches.

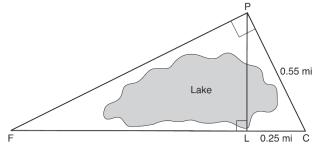
Part A

What is the horizontal length of the base of Jane's ramp and the base of Mark's ramp? Enter your answer in the box.

Part B

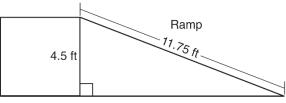
Which car is launched from the highest point? Enter your answer in the box.

3. In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.



If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

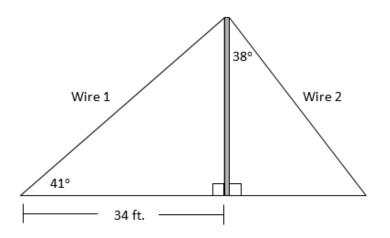
4. The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.



Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

- 5. In $\triangle ABC$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
- A. $tan \angle A = tan \angle B$
- B. $sin \angle A = sin \angle LB$
- C. $cos \angle A = tan \angle B$
- D. $sin \angle A = cos \angle B$

6. In the figure below, a pole has two wires attached to it, one on each side, forming two right triangles.

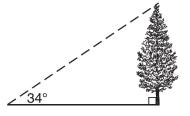


Based on the given information, answer the questions below. How tall is the pole? Enter your answer in the box.

How far from the base of the pole does Wire 2 attach to the ground? Enter your answer in the box.

How long is Wire 1? Enter your answer in the box.

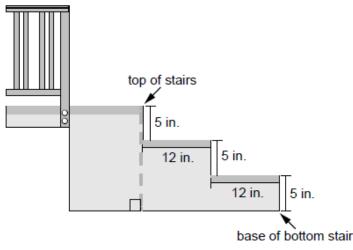
7. As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.



If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

- A. 29.7
- B. 16.6
- C. 13.5
- D. 11.2

8. Leah needs to add a wheelchair ramp over her stairs. The ramp will start at the top of the stairs. Each stair makes a right angle with each riser.



Note: Not to scale

Part A

The ramp must have a maximum slope of $\frac{1}{12}$. To the nearest hundredth of a foot, what is the shortest length of ramp that Leah can build and not exceed the maximum slope? Enter your answer in the box.

Part B

Leah decides to build a ramp that starts at the top of the stairs and ends 18 feet from the base of the bottom stair. To the nearest hundredth of a foot, what is the length of the ramp? Enter your answer in the box.

Part C

To the nearest tenth of a degree, what is the measure of the angle created by the ground and the ramp that Leah builds in part B? Enter your answer in the box.

MAFS.912.G-SRT.3.6 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

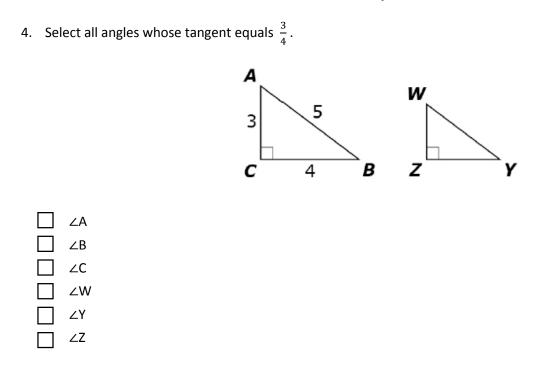
1. What is the sine ratio of $\angle P$ in the given triangle?

	M 15
A. $\frac{8}{17}$	
B. $\frac{8}{15}$	8 17
B. $\frac{8}{15}$ C. $\frac{15}{17}$ D. $\frac{15}{8}$	P
D. $\frac{15}{8}$	

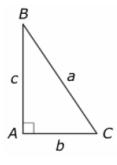
- 2. Kendall drew a right triangle. The tangent value for one angle in her triangle is 1.8750. Which set of side lengths could belong to a right triangle similar to the triangle Kendall drew?
 - A. 16 cm, 30 cm, 35 cm
 - B. 8 cm, 15 cm, 17 cm
 - C. 6 cm, 8 cm, 10 cm
 - D. 1.875 cm, 8 cm, 8.2 cm
- 3. Angles F and G are complementary angles.
 - As the measure of angle F varies from a value of x to a value of y, sin(F) increases by 0.2.

How does cos(G) change as F varies from x to y?

- A. It increases by a greater amount.
- B. It increases by the same amount.
- C. It increases by a lesser amount.
- D. It does not change.



5. The figure shows right $\triangle ABC$.



Of the listed values are equal to the sine of *B*? Select ALL that apply.

b c

- <u>с</u> а
- $\frac{b}{a}$
- The cosine of B
- The cosine of C
- The cosine of $(90^{\circ} B)$
- The sine of $(90^\circ C)$

MAFS.912.G-SRT.3.7 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

1. Explain why cos(x) = sin(90 - x) for x such that 0 < x < 90

- 2. Which is equal to $sin 30^\circ$?
 - A. cos 30°
 - B. cos 60°
 - C. sin 60°
 - D. sin 70°
- 3. Adnan states if $cos30^{\circ} \approx 0.866$, then $sin30^{\circ} \approx 0.866$. Which justification correctly explains whether or not Adnan is correct?
 - A. Adnan is correct because $cosx^{\circ}$ and $sinx^{\circ}$ are always equivalent in any right triangle.
 - B. Adnan is correct because $cosx^{\circ}$ and $sinx^{\circ}$ are only equivalent in a $30^{\circ} 60^{\circ} 90^{\circ}$ triangle.
 - C. Adnan is incorrect because $cosx^{\circ}$ and $sin(90 x)^{\circ}$ are always equivalent in any right triangle.
 - D. Adnan is incorrect because only $cosx^{\circ}$ and $cos(90 x)^{\circ}$ are equivalent in a 30°-60°-90° triangle.

4. In right triangle ABC, $m \angle B \neq m \angle C$. Let $\sin B = r$ and $\cos B = s$. What is $\sin C - \cos C$?

- A. r + s
- B. r s
- C. *s r*
- D. $\frac{r}{s}$
- 5. In right triangle ABC with the right angle at C, sin A = 2x + 0.1 and cos B = 4x 0.7.

Determine and state the value of x. Enter your answer in the box.

FSA Geometry End-of-Course Review Packet Modeling and Geometry

Table of Contents	Tab	le	of	Contents
-------------------	-----	----	----	----------

MAFS.912.G-MG.1.1 EOC Practice	.3
MAFS.912.G-MG.1.2 EOC Practice	.6
MAFS.912.G-MG.1.3 EOC Practice	.8

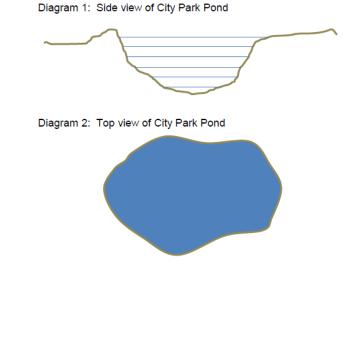
MAFS.912.G-MG.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses measures and	uses measures and properties to model and	finds a dimension for a	applies the modeling
properties to model	describe a real- world object that can be modeled	real- world object that	cycle to determine a
and describe a real-	by composite three- dimensional objects; uses	can be modeled by a	measure when given a
world object that	given dimensions to answer questions about area,	composite three-	real-world object that can
can be modeled by a	surface area, perimeter, and circumference of a	dimensional figure when	be modeled by a
three- dimensional	real-world object that can be modeled by	given area, volume,	composite three-
object	composite three-dimensional objects	surface area, perimeter,	dimensional figure
		and/or circumference	

1. The diameter of one side of a 10-foot log is approximately 13 inches. The diameter of the other side of the log is approximately 11 inches. Which is the best way to estimate the volume (in cubic feet) of the log?

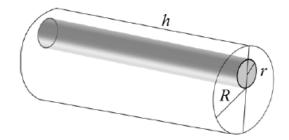


- A. $3 \cdot \frac{1}{4} \cdot 10$
- B. $3 \cdot 1 \cdot 10$
- C. 3 · 36 · 10
- D. 3 · 144 · 10
- 2. Based on the two diagrams shown, which formula would be best to use to estimate the volume of City Park Pond?



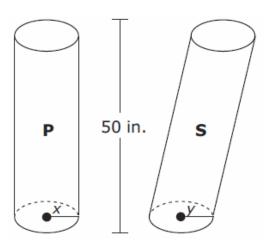
A. $V = \pi r^{2}h$ B. $V = \frac{2}{3}\pi r^{3}$ C. $V = \frac{1}{3}Bh$ D. $V = \frac{1}{3}\pi r^{2}h$

3. An object consists of a larger cylinder with a smaller cylinder drilled out of it as shown.



What is the volume of the object?

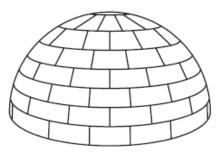
- A. $\pi (R^2 r^2)h$
- B. $(\pi R^2 r^2)h$
- C. $(R^2 \pi r^2)h$
- D. $\pi (R r)^2 h$
- 4. Two cylinders each with a height of 50 inches are shown.



Which statements about cylinders P and S are true? Select ALL that apply.

- If x = y, the volume of cylinder P is greater than the volume of cylinder S, because cylinder P is a right cylinder.
- □ If x = y, the volume of cylinder P is equal to the volume of cylinder S, because the cylinders are the same height.
- \Box If x = y, the volume of cylinder P is less than the volume of cylinder S, because cylinder S is slanted.
- □ If x < y, the area of a horizontal cross section of cylinder P is greater than the area of a horizontal cross section of cylinder S.
- □ If x < y, the area of a horizontal cross section of cylinder P is equal to the area of a horizontal cross section of cylinder S.
- □ If x < y, the area of a horizontal cross section of cylinder P is less than the area of a horizontal cross section of cylinder S.

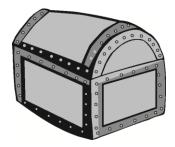
5. An igloo is a shelter constructed from blocks of ice in the shape of a hemisphere. This igloo has an entrance below ground level.



The outside diameter of the igloo is 12 feet. The thickness of each block of ice that was used to construct the igloo is 1.5 feet. Estimate in cubic feet the amount of space of the living area inside the igloo.

6. The figure below shows a 20-foot-tall evergreen tree with a 1-foot-wide trunk. The lowest branches are 3 feet above the ground, and at that level, the tree is 7 feet wide. What is an appropriate shape (or combination of shapes) that can be used to model the tree to estimate the volume of the tree. Indicate the dimensions of the shape(s).

7. The figure below represents a chest. What is an appropriate shape (or combination of shapes) that can be used to model the chest.



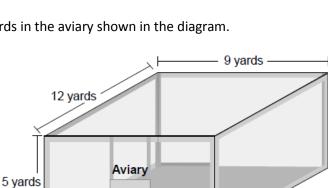
MAFS.912.G-MG.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates density based on a given	calculates density based on area	finds area or volume given	applies the basic modeling
area, when division is the only step and volume and identifies		density; interprets units to	cycle to model a situation
required, in a real-world context appropriate unit rates		solve a density problem	using density

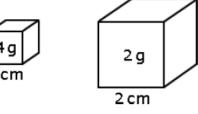
- 1. Given the size and mass of each of the solid cubes X and Y, how many times is the density of cube X greater than the density of cube Y?
 - A. 4
 - B. 6
 - C. 8
 - D. 16
- 2. An aviary is an enclosure for keeping birds. There are 134 birds in the aviary shown in the diagram.

What is the number of birds per cubic yard for this aviary? Round your answer to the nearest hundredth.

- A. 0.19 birds per cubic yard
- B. 0.25 birds per cubic yard
- C. 1.24 birds per cubic yard
- D. 4.03 birds per cubic yard
- 3. County X has a population density of 250 people per square mile. The total population of the county is 150,000. Which geometric model could be the shape of county X?
 - A. a parallelogram with a base of 25 miles and a height of 25 miles
 - B. a rectangle that is 15 miles long and 45 miles wide
 - C. a right triangle with a leg that is 30 miles long and a hypotenuse that is 50 miles long
 - D. a trapezoid with base lengths of 10 miles and 30 miles and a height of 25 miles
- 4. Which field has a density of approximately 17,000 plants per acre?
 - A. 85 acres with 1.02 × 106 plants
 - B. 100 acres with 1.7×107 plants
 - C. 110 acres with 1.9 × 106 plants
 - D. 205 acres with 3.4 × 105 plants



cube X



cube Y

5. A typical room air conditioner requires 2.5 BTUs of energy to cool 1 cubic foot of space effectively. For each of the following room sizes, indicate whether a 4,000 BTU air conditioner will meet the requirement to keep the room cool.

Room Length	Room Width	Ceiling Height	Will the Air Conditioner Meet the Requirement to Keep the Room Cool? (yes or no)
14 feet	14 feet	8 feet	
15 feet	12 feet	9 feet	
16 feet	10 feet	9 feet	
20 feet	11 feet	8 feet	

6. The town of Manchester (population 50,000) has the shape of a rectangle that is 5 miles wide and 7 miles long.

Part A

What is the population density, in people per square mile, in Manchester? Round your answer to the nearest whole number of people per square mile.

Part B

The town of Manchester contains a business area in the center of town that has the shape of a disk with a radius of 1 mile. If no one resides in the business area, what is the population density in Manchester, in people per square mile, outside of the business area? Round your answer to the nearest whole number of people per square mile.

- 7. A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?
 - A. 16,336
 - B. 32,673
 - C. 130,690
 - D. 261,381

MAFS.912.G-MG.1.3 EOC Practice

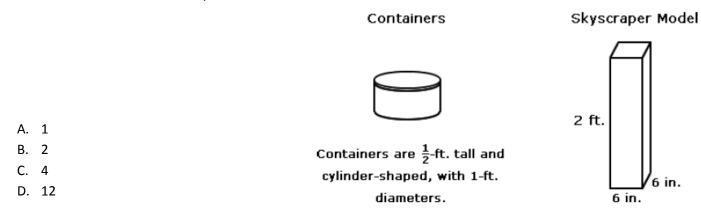
Level 2	Level 3	Level 4	Level 5
uses ratios and a grid	applies geometric methods to solve	constructs a geometric figure	applies the basic modeling
system to determine	design problems where numerical	given physical constraints; chooses	cycle to solve a design
values for dimensions	physical constraints are given; writes	correct statements about a design	problem that involves cost;
in a real-world context	an equation that models a design	problem; writes an equation that	applies the basic modeling
	problem that involves perimeter,	models a design problem that	cycle to solve a design
	area, or volume of simple composite	involves surface area or lateral	problem that requires the
	figures; uses ratios and a grid system	area; uses ratios and a grid system	student to make inferences
	to determine perimeter, area, or	to determine surface area or	from the context
	volume	lateral area	

1. Stephanie is going to form a clay model of the moon. The model will have a diameter of 2 feet, and the clay she will use comes in containers as described below. What is the least number of containers Stephanie will need in order to complete the model?

Containers

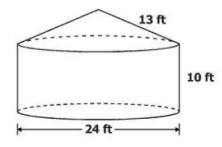
 A. 3 B. 11 C. 16 D. 22 	Containers are $\frac{1}{2}$ -ft. tall and cylinder-shaped, with 1-ft. diameters.	

2. Lewis is going to form a clay model of a skyscraper. The model will be in the shape of a 2-foot tall prism with a 6-inch by 6-inch base. The clay he will use comes in containers as described below. What is the least number of containers Lewis will need in order to complete the model?



Model of the Moon

3. This container is composed of a right circular cylinder and a right circular cone.



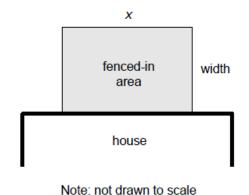
Which is closest to the surface area of the container?

- A. 490 *ft*²
- B. $754 ft^2$
- C. 1,243 ft^2
- D. $490 ft^2$
- 4. Beth is going to enclose a rectangular area in back of her house.

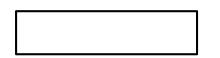
The house wall will form one of the four sides of the fenced-in area, so Beth will only need to construct three sides of fencing.

Beth has 48 feet of fencing. She wants to enclose the maximum possible area. What amount of fence should Beth use for the side labeled x?

- A. 12 feet
- B. 16 feet
- C. 24 feet
- D. 32 feet



5. A farmer wants to build a new grain silo. The shape of the silo is to be a cylinder with a hemisphere on top, where the radius of the hemisphere is to be the same length as the radius of the base of the cylinder. The farmer would like the height of the silo's cylinder portion to be 3 times the diameter of the base of the cylinder. What should the radius of the silo be if the silo is to hold $22,500\pi$ cubic feet of grain?



6. A wooden block measuring 6 inches by 8 inches by 10 inches is to be carved into the shape of a pyramid.

Part A

What is the largest volume of a pyramid that can be made from the block?

Part B

Does the length of the sides that are chosen for the base of the pyramid have an effect on your calculation in Part A? Justify your answer.

7. Hank is putting jelly candies into two containers. One container is a cylindrical jar with a height of 33.3 centimeters and a diameter of 8 centimeters. The other container is spherical. Hank determines that the candies are cylindrical in shape and that each candy has a height of 2 centimeters and a diameter of 1.5 centimeters. He also determines that air take up 20% of the volume of the containers. The rest of the space will be taken up by the candies.

Part A

After Hank fills the cylindrical jar with candies, what will be the volume, in cubic centimeters, of the air in the cylindrical jar? Round your answer to the nearest whole cubic centimeter.

What is the maximum number of candies that will fit in the cylindrical jar?

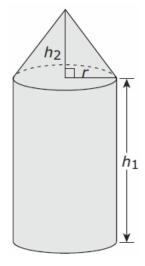
Part C

The spherical container can hold a maximum of 280 candies. Approximate the length of the radius, in centimeters, of the spherical container. Round your answer to the nearest tenth.

Part D

Hank is filling the cylindrical container using bags of candy that have a volume of 150 cubic centimeters. Air takes up 10% of the volume of each bag, and the rest of the volume is taken up by candy. How many bags of candy are needed to fill the cylindrical container with 260 candies?

8. The Farmer Supply is building a storage building for fertilizer that has a cylindrical base and a cone-shaped top. The county laws say that the storage building must have a maximum width of 8 feet and a maximum height of 14 feet.

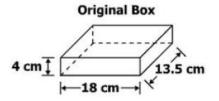


Dump trucks deliver fertilizer in loads that are 4 feet tall, 6 feet wide, and 12 feet long. Farmer Supply wants to be able to store 2 dump-truck loads of fertilizer.

Determine a height of the cylinder, h_1 , and a height of the cone, h_2 , that Farmer Supply should use in the design. Show that your design will be able to store at least two dump-truck loads of fertilizer.

Enter your answer and your work in the space provided.

9. A cell phone box in the shape of a rectangular prism is shown. The height of the box is 4 cm.



The height of the original box will be increased by 3.5 centimeters so a new instruction manual and an extra battery can be included. Which is closest to the total surface area of the new box?

- A. 479 *cm*²
- B. 707 *cm*²
- C. 738 *cm*²
- D. 959 cm^2

10. Mr. Fontenot planted four types of soybeans on his land in order to compare overall cost (for planting and harvesting) and crop harvest. The table shows the number of acres planted, the cost per acre, and the number of bushels of soybeans produced for the different types of soybeans.

Type of Soybean	Number of Acres Planted	Cost (per acre) to Harvest	Number of Bushels Produced
Α	200	\$174.70	9,000
В	150	\$180.90	7,500
С	100	\$192.40	5,900
D	75	\$204.00	4,500

Part A

Regulations specify that Mr. Fontenot cannot devote more than 80% of a field to one particular type of soybean. He wants to design a field so that he can harvest the most soybeans for the lowest cost. What is the best design plan for Mr. Fontenot's 525 acres? Include specific details about which soybeans you chose, how many acres of each type should be planted, and why you chose those soybeans.

Part B

This table shows the profit Mr. Fontenot can earn per bushel for each type of soybean.

Type of Soybean	Profit per Bushel
А	\$4.50
В	\$3.88
С	\$3.96
D	\$4.24

Determine if the design plan created in part A is the most profitable 80/20 design.

• If part A is the most profitable plan, explain why it is the most profitable and include specific details about the profitability of the plan from part A compared to all other possible design plans.

OR

If part A is not the most profitable plan, determine which design plan is the most profitable and include specific
details about the profitability of the plan from part A compared to this design plan.